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Introduction

In many predator and prey interactions, the

time the predator takes to capture the prey limits

the rate of predation. The phenomenon can be in-

terpreted as a ”saturation” of predators when prey

levels are high enough.

The function p(x) = ax
1+mx is called a Holling

II functional response. The ”p” represents the vari-

ation in prey density (x) with relation to time due

to the presence of one predator. When prey density

becomes large p tends to a/m, which is a constant

which measures the handling ability of one predator

when it can find prey everywhere.

Figure 1: Shark and shoal. From [3].

Even with high density of fish, predation rate is limited considering
shark’s handling velocity.

Holling-II and Stage
Structure System

In the following system from [1], x represents

the density of prey, y1 of young predators (which do

not hunt) and y2 of mature predators. Preys have

a negative Holling II term, while in predators it is

positive. Young predators are generated in a rate e,

die in a rate r1 and become mature predators in a

rate D. 
ẋ = x

(
r − ax− a1y2

1+mx

)
ẏ1 = ey2 − (r1 + D)y1

ẏ2 = Dy1 − r2y2 + a2xy2

1+mx

(1)

- Local Stability

Linearization of the system about the predator-

extinction equilibrium point E1 = (ra; 0; 0) yields the

following characteristic equation, with coefficients

defined below:

(λ + r)(λ2 + g1λ + g0) = 0,

g0 := r2(D + r1)− eD − (D + r1)
a2r
a+rm

g1 := D + r1 + r2(a+rm)−a2r
a+rm

Here, (λ1 = −r) is a negative eigenvalue. Look-

ing at the quadratic equation coefficients, we can

show that if condition H1: a2r > (a + rm)[r2 −
eD
D+r1

> 0 holds, the two other roots have different

signs, which implies that E1 is unstable. If, instead,

0 < a2r(D+ r1) < (a+ rm)[r2(D+ r1)− eD], then

all roots have negative real parts, and E1 is locally

asymptotic stable.

If (H1) holds, then a coexistence equilibrium

E∗ = (x∗; y∗1 ; y∗2) ∈ R3
+ exists, given by:

x∗ = r2(D+r1)−eD
(a2−r2m)(D+r1)+emD

y∗1 = e
D+r1

y∗2
y∗2 = a2(D+r1)(r−ax∗)x∗

a1[r2(D+r1)−eD]

The characteristic equation for this coexistence

equilibrium E∗ is the following, with coeficients de-

fined below it:

λ3 + p2λ
2 + p1λ + p0 = 0,

p0 := [(a2 − r2m)(D + r1) + emD] a1x
∗y∗2

(1+mx∗)2

p1 := (D+ r1 + r2)
a1y
∗
2

(1+mx∗)2 + (r− 2ax∗)( a2x
∗

1+mx∗−
(D + r1 + r2))

p2 := D + r1 + 2ax∗ − r + eD
D+r1

+ a1y
∗
2

(1+mx∗)2

If p2 > 0 and p1p2−p0 > 0, then Routh Hurwitz

criterium guarantees that all roots have negative real

part, implying that E∗ is L.A.S.

- Global Stability

Theorem If a2r(D + r1) < (a +

rm)[r2(D + r1) − eD], then E1 =: (x0; 0; 0)

is globally asymptotically stable (attracts A :=

(x; y1; y2) ∈ R3 : x > 0, y1 ≥ 0, y2 ≥ 0).

Proof: Under this hypothesis E1 was proven to

be L.A.S. The attraction of region A comes from La

Salle’s invariance principle, considering the following

function and positive solutions of the system:

V1(t) := a2

1+mx0

(
x− x0 − x0ln

(
x
x0

))
+ a1D
D+r1

y1 +a1y2

Evolution of (x; y1; y2) with a = 2, r1 = 2, r2 = 2, other parameters = 1.

Theorem If H1 holds and lim inf
t→∞

x(t) ≥
l > r

2a, then E∗ is G.A.S. (attracts B :=

(x; y1; y2) ∈ R3 : x > 0, y1 > 0, y2 > 0).

Proof: The second hypothesis implies that

x∗ > r/2a. Under this condition, we have p2 > 0

and p2p1 − p0 > 0, and E∗ is L.A.S. As before, the

attraction of region B comes from La Salle’s invari-

ance principle using the function V2.

V2(t) := a2

1+mx∗

(
x− x∗ − x∗ln

(
x
x∗

))
+

a1D
D+r1

(
y1 − y∗1 − y∗1ln

(
y1

y∗1

))
+a1

(
y2 − y∗2 − y∗2ln

(
y2

y∗2

))
Temporal evolution with a1 = 3/25, a2 = 2, and other parameters = 1.

Delayed System

Next system is presented in II. Here, predator

gain from hunting is delayed, i.e., depends on the re-

sults of hunting in past time: be−djτy(t− τ )p(x(t−
τ )). In practice, the gain from predation is con-

verted in new young predators, and the delay is the

time of incubating those, considering that dj is their

death rate during this period. The studied p func-

tions satisfy: p(0) = 0, p is increasing, p(x)/x is

bounded and lim
x→0

p(x)
x 6= 0.

{
ẋ(t) = x(t)(1− x(t))− y(t)p(x(t))

ẏ(t) = be−djτy(t− τ )p(x(t− τ ))− dy(t)
(2)

The origin is a saddle point. λ1 = 1, λ2 = −d.

If we linearize the system about the predactor-

extinction equilibrium point (1;0), the characteristic

equation takes the form:

(λ + 1)(λ + d− be−djτp(1)e−λτ) = 0

One of the roots is negative. If (H1): p(1) >
d

be−djτ
, then the other root is real and positive, what

can be ilustrated by plotting the two members of

the equation λ = be−djτp(1)e−λτ − d in relation to

lambda, and using that be−djτp(1)− d is positive.

If, instead, be−djτp(1) − d ≤ 0, then we can

show that no root has positive real part.

The coexistence equilibrium exists if and only

if H1 holds, and hence the existence of a coexistence

equilibrium makes E1 unstable.
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