21 – 25 de ago. de 2023
IFSC/USP
Fuso horário America/Sao_Paulo

Plasmonic biosensors based on AUNI/glass substrates using optical microscopy and machine learning image classification as detection methods

21 de ago. de 2023 14:00
1h 30m
Salão de Eventos USP

Salão de Eventos USP

Básica 14h00 - 15h30

Descrição

Optical biosensors with plasmonic substrates are typically used with detection methods based on spectral measurements with spectrometers and sophisticated optical instruments. To allow this type of biosensors in POC applications it is necessary to employ simple optical detection methods and data analysis. The use of optical microscopes as tools for measuring the response of the AuNI/glass biosensor devices can offer a simple alternative, as the images can be analyzed using machine learning (ML) algorithms for image classification. Here, we propose a system exploiting computer vision with ML, including Deep Learning algorithms, for microscopy image classification as measurement method for plasmonic genosensors. We demonstrate the use of ML for optical microscopy image classification of plasmonic substrates formed by AuNI/glass after surface modifications in a genosensor for SARS-CoV-2 virus. (1) The optical transmission microscopy images (40x magnification) were classified with Deep Learning and other ML algorithms. (2) The networks were able to distinguish the images of the genosenosors after the interaction with SARS-CoV-2 ssDNA from those which interacted with non-complementary ssDNA sequences or other three control groups (clean, 11-MUA, Blank). The accuracy was 0.87 with up to 96.8% sensitivity. In summary, simple optical microscopy coupled with a deep neural and ML networks can be employed in detection using plasmonic genosensors. Further studies are required to help identify the optimal classification descriptors for plasmonic sensors and other biosensing applications.

Referências

1 SOARES, J. C. et al. Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques. Materials Chemistry Frontiers, v. 5, n. 15, p. 5658-5670, 2021.

2 RIBAS, L. C.; SÁ JUNIOR, J. J. M.; SCABINI, L. F. S.; BRUNO, O. M. Fusion of complex networks and randomized neural networks for texture analysis. Pattern Recognition, v. 103, p. 107189-1-107189-10, July 2020.

Certifico que os nomes citados como autor e coautor estão cientes de suas nomeações. Sim
Palavras-chave Biosensors. Plasmonics. Machine learning.
Orientador e coorientador Osvaldo Novais de Oliveira junior
Subárea 1 Física da Matéria Condensada
Subárea 2 (opcional) Física Aplicada à Biologia e à Medicina
Subárea 3 (opcional) Física Computacional
Subárea 4 (opcional) Instrumentação e Detectores
Agência de Fomento CAPES
Número de Processo "Não se aplica"
Modalidade DOUTORADO
Concessão de Direitos Autorais Sim

Autor primário

Pedro Ramon Almeida Oiticica (Instituto de Física de São Carlos - USP)

Co-autores

Sr. Leonardo Felipe dos Santos Scabini (Instituto de Física de São Carlos - USP) Dr. Lucas Correia Ribas (Instituto de Biociências, Letras e Ciências Exatas - UNESP) Odemir Martinez Bruno (Instituto de Física de São Carlos - USP) Osvaldo Novais de Oliveira Junior (Instituto de Física de São Carlos - USP)

Materiais de apresentação

Ainda não há materiais