jelena.celic@fau.de Optimization of the image cleaning performance of H.E.S.S. telescopes Jelena Celic

with ORCA

Master thesis

jelena.celic@fau.de Optimization of the image cleaning performance of H.E.S.S. telescopes Jelena Celic

Jelena Celic

Bachelor thesis

with ORCA

Master thesis

Optimization of the image cleaning performance of H.E.S.S. telescopes

Jelena Celic High-energy astrophysics in the multi-messenger era 08.04.2024

The H.E.S.S. System (High Energy Stereoscopic System)

- located in Namibia, operating for over 20 years
- IACT with 5 telescopes
- Observation of gamma rays from 10s of GeV to 10s of TeV

Detection principle of IACTs

- Gamma ray enters atmosphere
 -> Particle cascade showers
- Cherenkov radiation

Detection principle of IACTs

- Gamma ray enters atmosphere
 -> Particle cascade showers
- Cherenkov radiation

Let's take a closer look

- Gamma ray enters atmosphere
 -> Particle cascade showers
- Cherenkov radiation

Image cleaning technique (done for over 20 years)

Image cleaning technique (done for over 20 years)

Image cleaning technique (done for over 20 years)

Raw Image = Signal + Noise due to Night Sky Background (NSB) CT1 HiGain (evt : 000002) CT2 HiGain (evt : 000002) CT3 HiGain (evt : 000002) CT4 HiGain (evt : 000002) CT5 HiGain (evt : 000002) 10000

Tailcut cleaning = Two threshold cleaning

Image cleaning technique (done for over 20 years)

• <u>Novel approach</u>: Including the pixel time information → **Time-based cleaning**

Time-based cleaning

In theory

٠

Aim: Improvement in low shower size range \rightarrow Lower the energy threshold

Standard cleaning: Not suitable for faint showers / low size events (~ low energetic events)

Time-based cleaning

Working principle of the algorithm

Our tool: **DBScan** = Density-Based Spatial Clustering of Applications with Noise

- \longrightarrow 2 parameters: minimum sample size and distance ϵ
- Our implementation requires 4 parameters:
 - Noise cut (=Precleaning step)
 - Time scale
 - Spatial scale 3D DB Scan
 - Cluster size

Time-based cleaning

Working principle of the algorithm

Our tool: **DBScan** = Density-Based Spatial Clustering of Applications with Noise

- \longrightarrow 2 parameters: minimum sample size and distance ϵ
- Our implementation requires 4 parameters:
 - Noise cut (=Precleaning step)
 - Time scale
 - Spatial scale 3D DB Scan
 - Cluster size
- Optimization of sensitivity not trivial
 - Image cleaning > Sensitivity

Time-based cleaning

Working principle of the algorithm

Our tool: **DBScan** = Density-Based Spatial Clustering of Applications with Noise

- \longrightarrow 2 parameters: minimum sample size and distance ϵ
- Our implementation requires 4 parameters:
 - Noise cut (=Precleaning step)
 - Time scale
 - Spatial scale 3D DB Scan
 - Cluster size
- Optimization of sensitivity not trivial
 - Image cleaning (> Angular reconstruction > Energy reconstruction > Gamma-Hadron-Separation > Instrument Response Functions) > Sensitivity
 - Very CPU time intensive \rightarrow Image cleaning study pipeline is needed

Jelena Celic

My approach to study image cleaning performance

Study Cleaning Image

Goals of image cleaning

- Keeping as much light of the shower as poss (Size retainment)
- Cleaning NSB as well as possible away (NSE survival rate)

Distinguish Gammas from Hadron And Less susceptible of NSB rate fluctuations

The metric plot

Background rejection power vs. NSB susceptibility

The metric plot (zoomed in)

Background rejection power vs. NSB susceptibility

The metric plot with new time-based cleaning algorithm

Background rejection power vs. NSB susceptibility

Four dimensional DBscan

The metric plot with new time-based cleaning algorithm

Background rejection power vs. NSB susceptibility

The metric plot with new time-based cleaning algorithm

Background rejection power vs. NSB susceptibility

Summary and Outlook

You almost survived a talk about cleaning

Summary:

- Optimization of the image cleaning performance is **<u>not</u>** a trivial task
- Pipeline focuses on gamma-hadron separation and NSB susceptibility
 - Currently implemented time-based cleaning algorithm apparently does not outperform tailcut
 - Adding a new dimension in DBscan: <u>some candidates outperform tailcuts</u>

Outlook:

- Testing some modified time-based cleaning algorithm that also cluster pixels according to their pixel value
- Run Optimization pipeline for HESS-IUs:
 - How to deal with stereo reconstruction?
 - Do we even need different cleanings for different configurations?
- Testing on some sources like Crab Nebula, RS Oph

Thanks for your attention! Any Questions?

Properties of Interest for Image Cleaning Study

New metric plot

Background rejection power (1-BKGEfficiency)

Metric is calculated for each cleaning at a fixed gamma efficiency after preselect

 Old optimization of time-based cleaning parameters (or how everyone else has approached this topic)

My question: Does time-based cleaning outperform tailcuts cleaning on a same event comparison?

Properties of Interest for Image Cleaning Study

0.8

1.0

Note: line is

arbitrary and

only for simplicity reasons there

completely

Properties of Interest for Image Cleaning Study

Properties of Interest for Image Cleaning Study

How NSB robust is our cleaning?

\longrightarrow Do we keep more NSB pixels at a higher NSB rate

 Calculate differences in gamma efficiency and background efficiency:

NSB susceptibility = $\sqrt{(\Delta \gamma_{eff})^2 + (\Delta B K G_{eff})^2}$

Modified time-based cleaning algorithm

H.E.S.S.

Added dimension in DBscan

