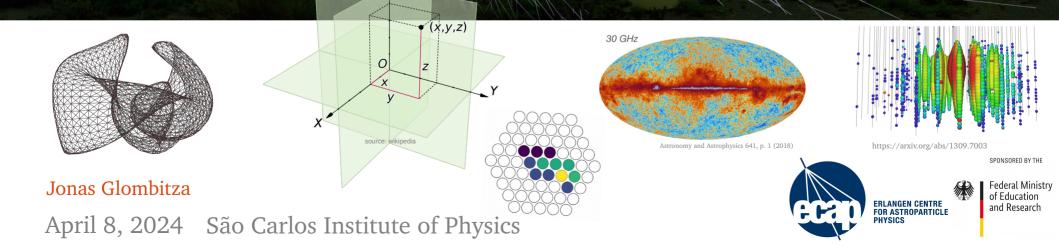
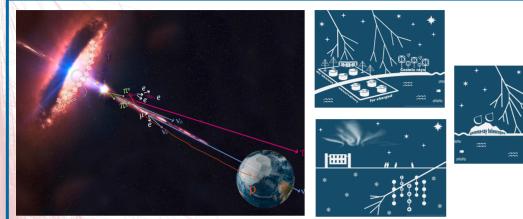


Friedrich-Alexander-Universität Erlangen-Nürnberg

Machine Learning for Astroparticle Physics



Astroparticle Physics and Al



Study of particles with astronomical origin

- arrival direction, energy, particle type Reconstructions
 - *basic:* fits, parameterizations, observables
 - *advanced:* MC templates, ML & observables
 - Aim: exploit all available information

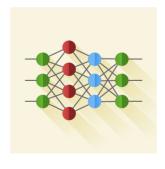
 \rightarrow needed: algorithm able to analyze complex high dimensional data)

Great progress in AI (last 15yrs)

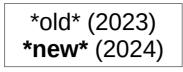
Deep neural networks (DNNs)

- \rightarrow new state-of-the-art
- Lots of training data
- Parallelized training (GPUs)
- New techniques/architectures

Able to exploit complex patterns in high dimensional data



Recap: Last workshop



Mass composition of UHECRs

- Composition measurements using water-Cherenkov detectors
- Shower reconstruction using deep learning
- Preliminary results on data

DNNs: Event Reconstruction SWGO

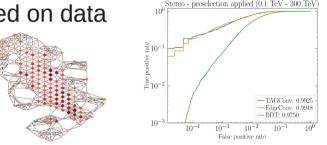
 Design of a future water-Cherenkov based gamma-ray detector

PIERRE

- **\/hadron separation** (Martin)
- Event reconstruction (Franziska)

DNNs: Event reconstruction for IACTs

- Graph networks: very promising on MC
- To be verified on data



Generative Models for IACTs

- Simulations very time consuming
 - accelerate (air) shower simulations
 - first successful application to IACTs
- Investigate anomaly detection

Generative models

Learn to generate new samples

Deep learning for physics Glombitza | ECAP | 04/08/24

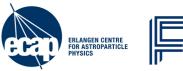
"Albert Einstein using a mobile phone while watching TV"

"A penguin flies in the sky and overtakes other birds. Clouds are seen in the background"

Breakthrough in generative machine learning

- generation of realistic images
- image feature local and global coherence
- realistic image super resolution

Which face is real?

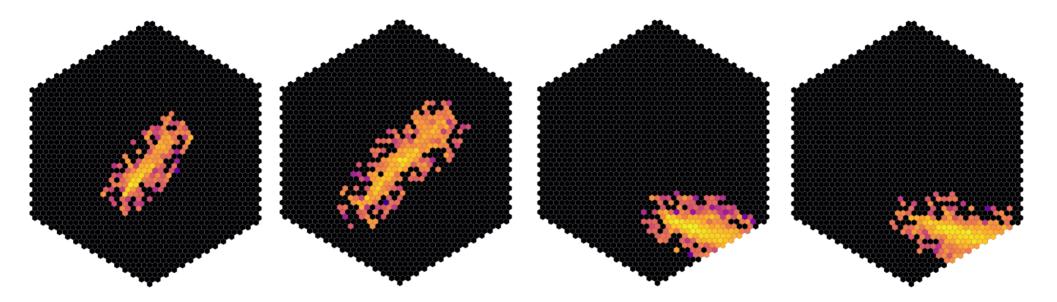


Deep learning for physics Glombitza | ECAP | 04/08/24

5

Play the game: https://www.whichfaceisreal.com

Which generated IACT image is real?



Imaging Air Cherenkov Telescope Example simulated / generated for the CT5 telescope of the H.E.S.S. array

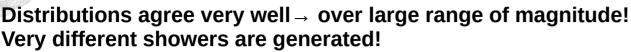
Hillas Parameter

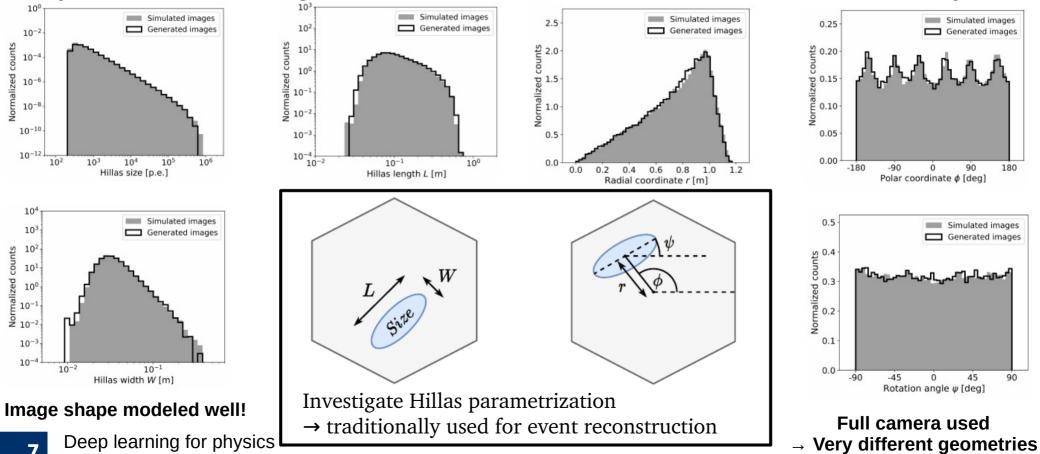
Glombitza | ECAP | 04/08/24

counts

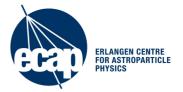
Vormalized

counts

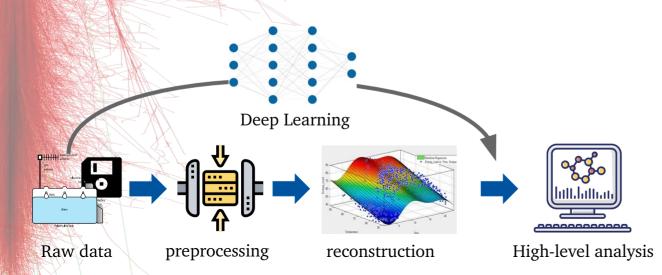


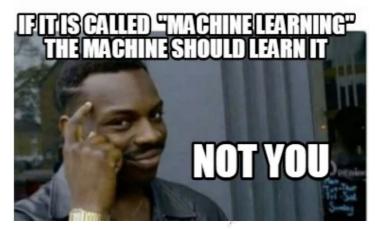


C.Elfein, S.Funk, J.G. arXiv:2311.01385, accepted by JINST

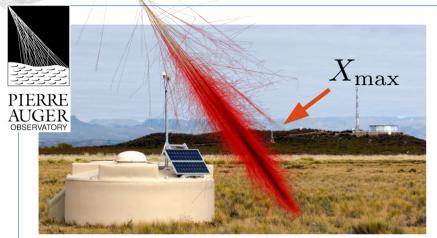


Physics Results & DNNs applied to data



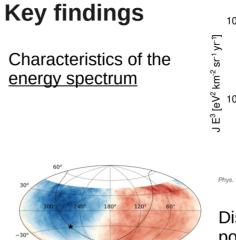


Ultra-high-energy cosmic rays (UHECRs)

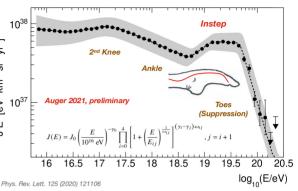


The Pierre Auger Observatory

- world's largest observatory to study ultra-high-energy cosmic rays
- hybrid detection of air showers
 - 1,660 water-Cherenkov detectors
 - 27 fluorescence telescopes
 - can precisely observe Xmax

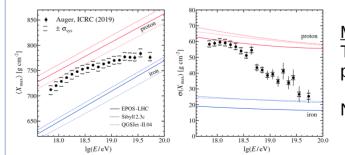


Flux [km⁻² sr⁻¹ vr⁻¹]



ERLANGEN CENTRE For Astroparticle Physics

Discovery: <u>large-scale anisotropy</u> pointing away from galactic center Hint: UHECRs are extragalactic



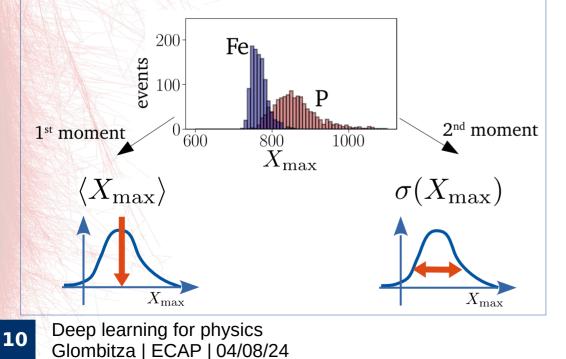
Mass composition Towards heavier and purer composition

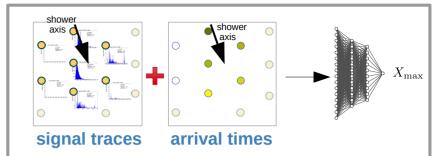
No GZK protons!

Xmax reconstructed with SD data

Mass composition of UHECRs

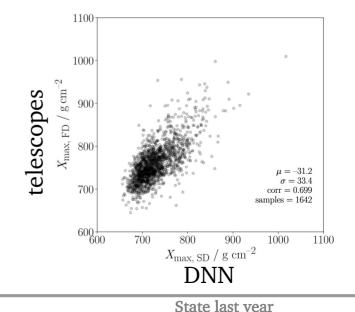
- currently: most precise mass estimator by reconstructing shower maximum *X*max
- determine composition by studying the measured Xmax distributions





DNN-based Xmax reconstruction

- Reconstruct Xmax using SD signals
- Calibrate and crosscheck using telescope (hybrid) data



Evidence for breaks in the elongation rate

Critical for understanding astrophysical sources

- Energy spectrum feature (deviations from simple power law)
- Evolution of mass composition

Telescope-based measurements:

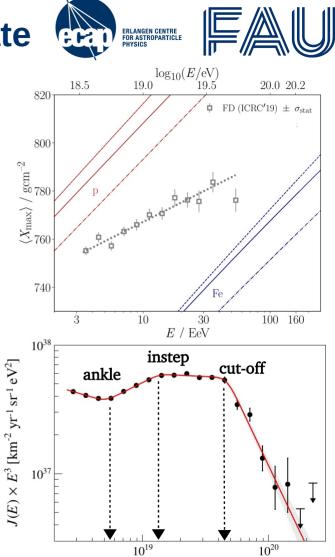
Linear model describes transition from light to heavy composition

Current interpretation:

- Ankle: transition from galactic to extra galactic
- Cut-off: maximum injection energy accelerator & propagation?

11 Deep learning for physics Glombitza | ECAP | 04/08/24

Preliminary: PoS(ICRC2023)278



E [eV]

Evidence for breaks in the elongation rate

Critical for understanding astrophysical sources

- Energy spectrum feature (deviations from simple power law)
- Evolution of mass composition

Telescope-based measurements:

Linear model describes transition from light to heavy composition

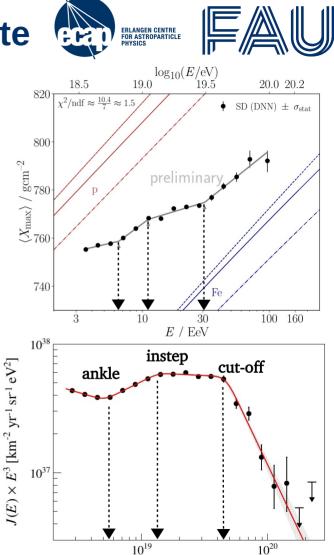
Surface-detector based (utilizing deep learning): statistics x10

Evidence for three breaks, coinciding with spectrum features

Current interpretation:

- Ankle: transition from galactic to extra galactic
- Cut-off: maximum injection energy accelerator & propagation?
- **12** Deep learning for physics Glombitza | ECAP | 04/08/24

Preliminary: PoS(ICRC2023)278



E [eV]

Summary

Advent deep learning (AI) offers new tools for astroparticle physics

- \rightarrow Novel opportunities to analyze large amounts of <u>raw</u> data
 - Event reconstruction
 - Background rejection
 - Central challenge: transfer performance from MC to data
 - 'refinement' of simulated data (domain adaption)
 - studies at ECAP:
 - event reconstruction: IACTs (H.E.S.S. / CTA), WCD-based (Auger, SWGO)
 - Unsupervised learning applications
 - acceleration of physics simulations
 - search for anomalies

13 Deep learning for physics Glombitza | ECAP | 04/08/24

Machine Learning and Deep Learning

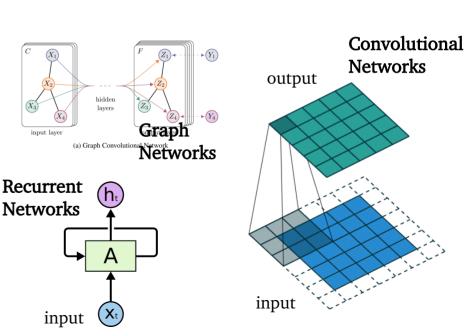
Machine Learning

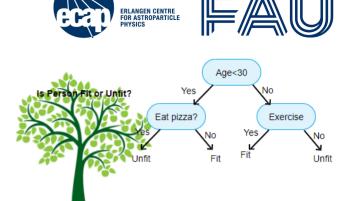
- applications across many physics domains, e.g., for (background rejection, multi-class classifications)
- BDTs, random forest, shallow NNs

Deep Learning

14

- driven by computer science (BigTechs)
- major improvements in:
 - speech recognition, NLP
 - pattern recognition, CV
- (usually) requires huge amounts of data



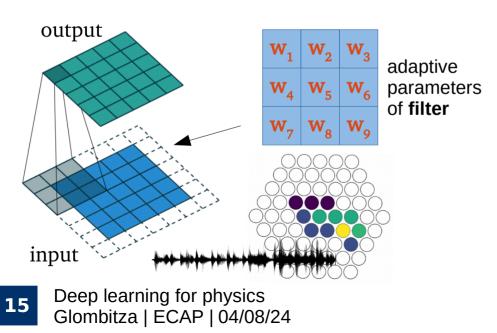


https://www.aitimejournal.com/@akshay.chavan/a-comprehensive-guide-to-decision-tree-learning

Deep Learning: RNNs & CNNs

Convolutional Networks (CNNs)

- analyze image-like data
- filter exploits image
 - features translational invariance
 - prior on local correlations

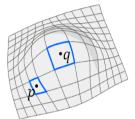


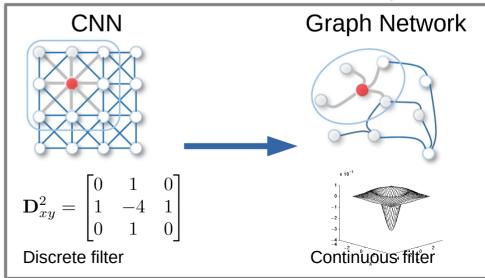
Graph Network

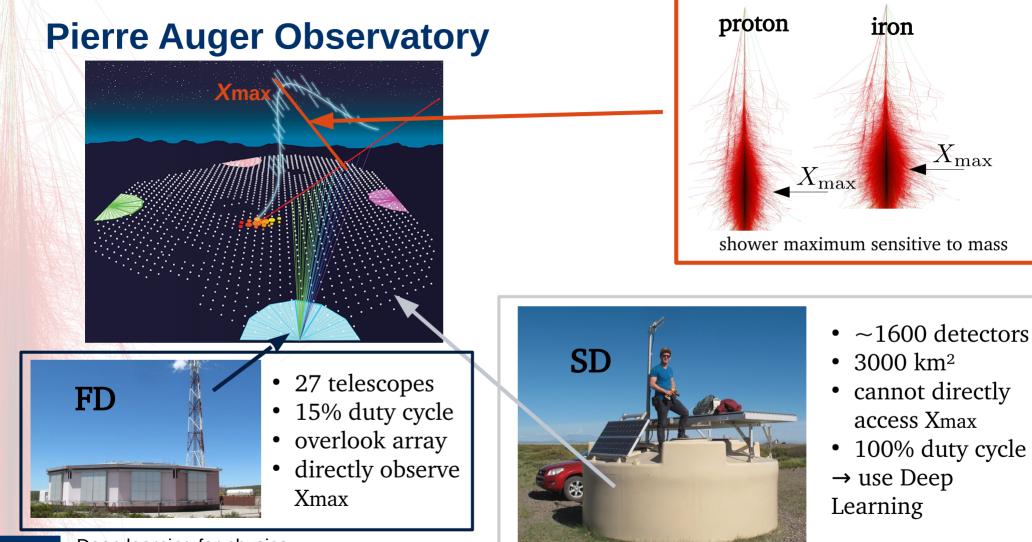
- For data with spatial correlations
 - Local proximity important prior
- Extent concept of CNNs to

Non-Euclidean Manifolds

Non-regular grids



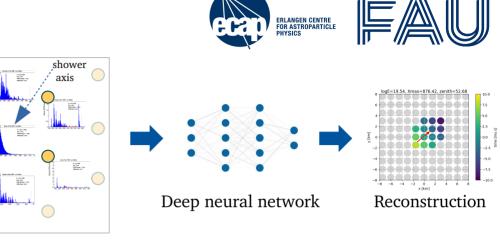




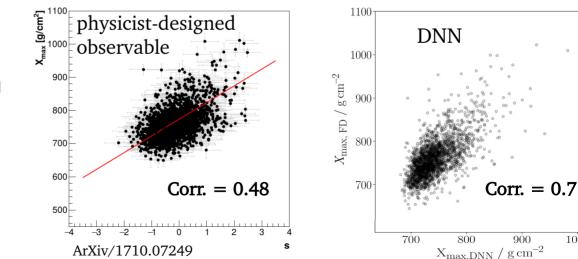
16 Deep learning for physics Glombitza | ECAP | 04/08/24

Air Shower Reconstruction

- Train neural network on simulated detector signals
- Verify reconstruction using hybrid events
 - precise observations of shower maximum using FD
- ML approach outperforms physicist's designed algorithm on MC and data
- potential for new insights into **UHECR** composition
- Deep learning for physics 17 Glombitza | ECAP | 04/08/24



signal traces



The Pierre Auger Collaboration, JINST 16 P07019 (2021)

1000

Summary



The advent of deep learning offers new tools for astroparticle physics \rightarrow novel opportunities to analyze large amounts of data

- Event reconstruction
- Background rejection
- unsupervised learning models
 - 'refinement' of simulated data (domain adaption)
- studies at ECAP:
 - event reconstruction: IACTs (H.E.S.S. / CTA), WCD-based (Auger, SWGO)
 - acceleration of physics simulations

Generalization Capacities on Data

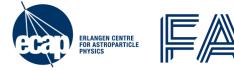
DNNs and Domain Adaption

- models are trained using physics simulations
- trained models are applied to data
 - can lead to reconstruction biases

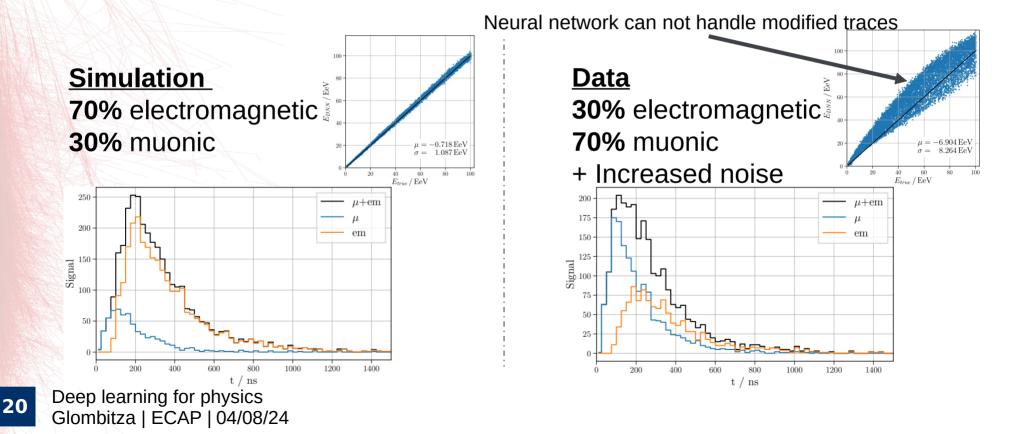
https://bair.berkeley.edu/static/blog/humans-cyclegan/

Simulation Refinement

Erdmann et al. Comput Softw Big Sci (2018) 2: 4



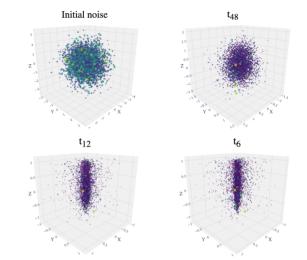
- Training on simulations but application on data
 - Model can be sensitive to artifacts / mismatches existing in simulation



Application in Particle Physics

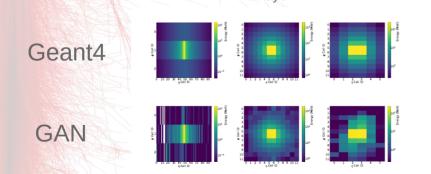
- Detector simulation are very time consuming
 - accelerated (10³–10⁵) using generative models
- Conditioned on the physics observables
 - e.g., (energy, particle type, arrival direction)
- Samples must comply with physics laws

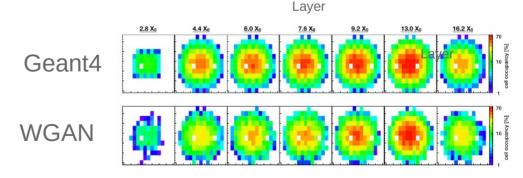
Laver



Buhmann et al., ArXiv/2305.04847

• Samples have to follow phase space density \rightarrow usually no cherry-picking





Erdmann, Glombitza, Quast - T. Comput Softw Big Sci (2019) 3: 4

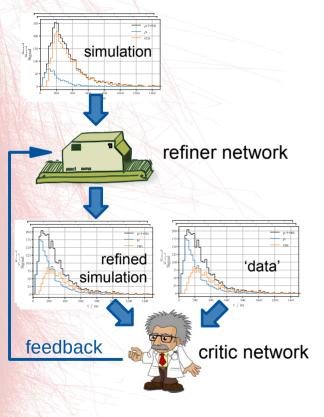
Paganini, Oliviera, Nachman - Phys. Rev. D 97, 014021 (2018)

21 Deep learning for physics Glombitza | ECAP | 04/08/24

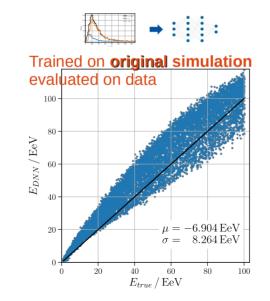
Simulation Refinement

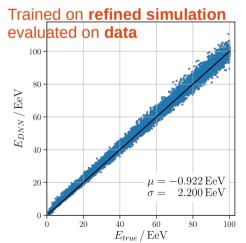
Erdmann et al. Comput Softw Big Sci (2018) 2: 4

mitigate data / simulation mismatches \rightarrow train *refiner* to refine simulated data



- feedback given by adversarial *critic* network, rating the refined simulation quality
 - refiner uses feedback to improve performance
- improved performance when training with refined simulation





22 Deep learning for physics Glombitza | ECAP | 04/08/24