AGN Studies: Variability Analysis of Fermi-LAT data for the Cherenkov Telescope Array & MHD simulations

High-Energy Astrophysics in the Multi-Messenger Era - IFSC - April/2024

Luana Passos Reis PhD Student at IAG-USP

Image credit: NASA - Jet Propulsion Laboratory, California Institute of Technology

São Paulo

Osasco

Lafayette, Louisiana - USA

Bachelor in Physics (IFUSP)

PhD Student in Astronomy (IAG/USP) since 2023

Outreach

Luana Passos Re<u>is - 2</u>

GAPAE: Plasma & High Energy Astrophysics

GAPAE: Plasma & High Energy Astrophysics

Variability Analysis of Fermi-LAT data to improve prospects with CTA

Luana Passos Reis*, Elisabete M. de Gouveia Dal Pino, Tarek Hassan, Jonathan Biteau, Santiago Pita, Jean-Philippe Lenain & Atreya Acharyya

* <u>luana.passos.reis@usp.br</u> / <u>luana.passosreis@cta-consortium.org</u>

INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS

Fermi-LAT (Large Area Telescope)

- NASA's Fermi Gamma-ray Space Telescope
- Observing X-rays and Gamma-rays from low Earth orbit since 2008!
 → energy range: 20 MeV to 300 GeV

Image credits: By NASA - https://science.nasa.gov/toolkits/spacecraft-icons, Public Domain, https://commons.wikimedia.org/w/index.php?curid=58291732 By NASA/DOE/Fermi LAT Collaboration - https://svs.gsfc.nasa.gov/11342 , Public Domain, https://commons.wikimedia.org/w/index.php?curid=72966833

CTA: Cherenkov Telescope Array

- next generation ground-based instrument for gamma-ray astronomy at very-high energies
- 64 telescopes located in the northern (La Palma, Canary Islands) and southern (ESO's Paranal Observatory, Chile) hemispheres
- First open ground-based gamma-ray observatory, multinational, worldwide project to build a new generation of gamma-ray instrument in the energy range extending from some tens of GeV to about 300 TeV

Introduction

- Procedure: Study through the data using the 4FGL Catalog
 - Light curves and Spectrum;
 - Fractional Variability;
 - Normalized Excess Variance.

Introduction

- **Procedure:** Study through the data using the 4FGL Catalog
 - Light curves and Spectrum;
 - Fractional Variability;
 - Normalized Excess Variance.
- Motivation:
 - Use public Fermi-LAT data to evaluate AGN variability;
 - Estimate the impact of including this variability on AGN populations detectability with CTA.

Introduction

- **Procedure:** Study through the data using the 4FGL Catalog
 - Light curves and Spectrum;
 - Fractional Variability;
 - Normalized Excess Variance.
- Motivation:
 - Use public Fermi-LAT data to evaluate AGN variability;
 - Estimate the impact of including this variability on AGN populations detectability with CTA.
- In order to:
 - Look for "Variability Trends" (or bias) at the CTA energy range;
 - "How does variability affect the population we might observe?";
 - Extrapolate light curves to CTA's energy range (AGN Long-Term Monitoring).

- 4FGL: the Fourth Fermi LAT Source Catalog of γ-ray detection
- Energy range: from 50 MeV to 300 GeV

Fermi LAT 60-month image

Most of the sources are blazars!

Blazars

Fermi LAT Light Curve Repository (LCR)

Image credit: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/

Catalog divided into 3 blazar classes

DR3 Catalog with 3814 sources

- Low Synchrotron Peak: 1699
- Intermediate Synchrotron Peak: 536
- High Synchrotron Peak: 590

that totalize <mark>2825</mark> sources with a Synchrotron Peak label

Downloaded 1429 valid light curves !

Image credit: Abdo et al. 2010

Variability in Blazars

- Particles are being accelerated and emits radiation from magnetically dominated processes in the inner region of the jet
- Blazars are one of the most variable extragalactic object: strong broad-band emission ranging from radio to TeV energies!

Fractional Variability Parameter

$$F_{\text{var}} = \sqrt{\frac{1}{F_{av}^{2}} \left[\frac{1}{N-1} \sum_{i=1}^{N} (F_{i} - F_{av})^{2} - \frac{1}{N} \sum_{i=1}^{N} \sigma_{\text{err,i}}^{2} \right]}$$
$$err(F_{\text{var}}) = \sqrt{\left(\sqrt{\frac{1}{2N} \frac{\overline{\sigma_{\text{err}}^{2}}}{F_{av}^{2} F_{\text{var}}}} \right)^{2} + \left(\sqrt{\frac{\overline{\sigma_{\text{err}}^{2}}}{N} \frac{1}{F_{av}}} \right)^{2}}$$

Vaughan et. al 2003

13 - Luana Passos Reis

Normalized Excess Variance

$$\sigma_{\text{NXS}}^2 = \frac{1}{F_{av}^2} \left[\frac{1}{N-1} \sum_{i=1}^N (F_i - F_{av})^2 - \frac{1}{N} \sum_{i=1}^N \sigma_{\text{err,i}}^2 \right]$$
$$err(\sigma_{\text{NXS}}^2) = \sqrt{\left(\sqrt{\frac{2}{N}} \cdot \frac{\overline{\sigma_{\text{err}}^2}}{F_{av}^2}\right)^2 + \left(\sqrt{\frac{\overline{\sigma_{\text{err}}^2}}{N}} \cdot \frac{2F_{\text{var}}}{F_{av}}\right)^2}$$

Vaughan et. al 2003

14 - Luana Passos Reis

• Selection of sources which show <mark>significant variability</mark> on a monthly timescale

$$\sigma_{NXS}^2(\text{monthly}) - 3 * err[\sigma_{NXS}^2](\text{monthly}) > 0$$

• Verification of <mark>3-day</mark> timescale variability against monthly timescale variability

Fractional Variability Calculations

- Fermi-LAT only has made available the F_var calculations for the Year cadence
- We have F_var calculations for 3-day, Weekly and Monthly cadences
- To Cross-Check: We are using the History-Flux from the 4FGL to simulate their F_var calculated for year cadence as in S. Abdollahi et al 2020 (ApJS 247 33).

Fractional Variability Calculations

F_var calculated for year cadence as in S. Abdollahi et al 2020 (ApJS 247 33).

Next Steps

- Refine the analysis treating the outliers
- Extrapolate the light curves using Gammapy
 - By defining
 - a variability threshold
 - which cadence is more relevant (3-day/ weekly/ monthly)
- In order to:
 - Find the observing time that CTA will need for each source
 - Correlation of the variability with
 - Free Index
 - Synchrotron Peak
 - Estimate what CTA will be able to detect and how variability affects the size of the population we identify

MHD simulations and particle acceleration:

special case of NGC 1068

Luana Passos Reis

Elisabete M. de Gouveia Dal Pino Giovani Heizen Vicentin Chandra B. Singh

Filtros BVR, Luana e Claikson, OPD - MG - Jun/2023

Neutrino VS gamma-ray flux from NGC1068

Electromagnetic observations (26)

0.1 to 100 GeV gamma-rays (40,41)

(IceCube Collaboration, 2022, Science)

(IceCube Collaboration, 2022, Science)

hotopion (π^{\pm} component

component

22

otopion (π^0 component

hotopion (π^0 component

(IceCube Collaboration, 2022, Science)

(IceCube Collaboration, 2022, Science)

Ĩ O

(IceCube Collaboration, 2022, Science)

<u>aucti</u>

Neutrino VS gamma-ray flux from NGC1068

Electromagnetic observations (26) 0.1 to 100 GeV gamma-rays (40,41) > 200 GeV gamma-rays (42)

What may accelerate these protons in the surroundings of the SMBH?

Neutrino VS gamma-ray flux from NGC1068

Electromagnetic observations (26) 0.1 to 100 GeV gamma-rays (40,41) > 200 GeV gamma-rays (42)

⁽IceCube Collaboration, 2022, Science)

Possible configuration of the magnetic field lines for an accretion flow into a black hole

Particles can be accelerated in the magnetic discontinuity according to a first-order Fermi process:

 $V_{\rm rec}$

Implies an exponential growth of the energy with time!

 ΔE

F

 $V_{\rm rec}$

NGC 1068 (Messier 77)

Filtros BVR

Thanks!

Questions ?

<u>luana.passos.reis@usp.br</u> <u>luana.passosreis@cta-consortium.org</u> Claikson Benedito &

Luana Reis Observatório Pico dos Dias (MG) -Jun/2023

Mastichiadis 2016

Fvar vs. Average Spectrum Flux per source

Fvar vs. Average Spectrum Flux per source

Removing flux_points that are outliers

- Remove, from the .json file of each source, the flux points in which
 - flux_error = 0
 fit_convergence !=0
 ?

Before and After Outlier Treatment

[41]: plot_lc('4FGL+J1512.8-0906.json', 8e-3, '3-days')

plot_lc('4FGL+J1512.8-0906.json', 8e-6, '3-days') [40]: 4FGL+J1512.8-0906 Light Curve -- 3-days cadence ----Ś Flux Points oton Flux (0.1-100 GeV ph *cm*⁻² Upper Limits 문 2010 2012 2014 2016 2018 2020 2022 2024 Date (UTC)

[41]: plot_lc('4FGL+J1512.8-0906.json', 8e-3, '3-days')

before

after

Before and After Outlier Treatment

Preliminary Analysis

Comparison of Excess Variance between 3-day and Monthly Data (log scale)

before

after

Preliminary Analysis

before

after

Preliminary Analysis

before

after