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Introduction to SWGO

2

The Southern Wide-field Gamma-ray Observatory 

What is SWGO?

- Array of Water Cherenkov 
Detectors (WCDs) to measures 
extensive air showers at ground 
level

- Will complement Imaging Air 
Cherenkov Telescopes (IACTs) like 
H.E.S.S. and future CTA south

- Detection principle successfully 
demonstrated by the HAWC and 
LHAASO experiments
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Motivation

3

Science case and sky coverage

Science Cases:
- PWNe, Pulsar Halos, PeVatron sources 
- Fermi Bubbles, DM from GC halo 

…

IACTs vs WCDs

Ground-level particle detection with 
>95% duty cycle and inherent wide fov 

(precision and instant sensitivity from 
IACTs will still be unmatched)

SWGO whitepaper

Richard White, MPIK                                          
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Gamma Hadron Separation

4

For HAWC like detectors

Common challenge with IACTs:
- Rejection of the huge background of air showers 

from charged, close to isotropic, cosmic rays.

SWGO still in design phase:
- Muon tagging power (and thus G/H separation) 

varies by detector design 
- Different configurations evaluated at fixed cost 
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Recap

5

Status last year in Erlangen

- Deep Learning pipeline setup for SWGO by Jonas

- First promising model trained for a single layout

- Model still relied on the Monte-Carlo shower core

- No comparison plots to the standard method yet

They are ready now, but I’ll first walk you through 
our architecture
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Slide by Harm Schorlemmer
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Why use Graph Neural Networks (GNNs)?

7

Motivation

- Want to improve over standard machine learning methods

- Challenging to exploit underlying symmetry using 
Convolutional Neural Networks (CNNs)  

- Signal footprint is sparse

- Good flexibility as GNNs work on non-regular grids 
(and perform well on them)

- Easy adaptation to different array layouts and tank designs 

Example Layout for SWGO
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Inputs and Normalization

8

Network inputs:

● Graphs of triggered stations: k-nearest neighbors (kNN) for positions (k = 7) 

● Features: Positions x, y, PMT time t, PMT signal S (charge)

Normalization:

● Signals: Logarithmic rescaling S’ = log10(1 + S) / σ

● Positions (x and y): Simple rescaling  tank’ = tankpos / σ
 
● Time: Z-score normalization  t’ = (t - μ) / σ

Inner array

Outer array

Exploit footprint using GNNs
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Example of Triggered Graph

9

Proton | 31.8° zenith angle | 7.5 TeV

Time Charge
Sho

wer
 ax

is
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Example of Triggered Graph

10

Gamma | 27.7° zenith angle | 5.9 TeV

Time Charge

Sh
ow

er
 a

xi
s
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Convolution in GNNs 

11

EdgeConvolution

Point Cloud
Estimate edge features 
with kernel function hθ 

Construct directed Graph 
Aggregate over 
neighborhood e.g. sum

Basic steps of edge convolution:

● Definition of graph (here with kNN algorithm)

● Estimate edge features by convolving with kernel function hθ

● Aggregation over the neighborhood

Kernel function is Neural Network!

M. Erdmann et al. (2021)

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
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Architecture Sketch

12

Hyperparameter optimization
(Random search, 70x trainings)

- Learning rate
- Decay factor
- Dropout 
- Batchnorm
- ResNet Layers
- EdgeConv Layers
- Kernel features
- DynEdgeConv

- Train GNN using GPUs (Nvidia A40 / A100)
  

- Implemented using PyTorch_Geometric

- ~500k trainable parameters
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Comparison to regular MLP

13

A1 double layer tank, F1 HAWC-like single layer tank

SWGO reference tank (two layers) HAWC-like tank (single layer)

standard method

standard method

~99% rejection
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Different Tank designs compared

14

- Large double layer tank offers the best 
gamma/hadron separation performance 
using the GNN

- Can have similar separation performance 
using a smaller double layer tank w.r.t. 
single layer design

- GNN also works for the small Multi-PMT 
tanks
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Summary

15

We developed a GNN algorithm for SWGO
- Triggered stations interpreted as graphs
- Promising results for G/H separation

Lots of stuff still left to explore with GNNs
- Different graph transformations (e.g. radius based graphs, …)
- Include neighboring non-triggered stations
- Performance studies with different tanks turned off

Reconstruct other variables using Deep Learning 
- GNNs can also solve regression tasks e.g. energy/direction reconstruction
- Explore transformer based approaches (Markus Pirke, Master student at ECAP) 
- Go to even lower level information: PMT traces
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Thank you for your Attention!
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Different Detector Layouts compared

18

- As expected the large A7 
layout has the worst 
performance

- Compact layouts like A5 
and A6 are good at low 
energies but lose their 
advantage at high energies

- A1 layout best across the 
whole energy range
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Different features exploredd

19

Explore different features

- Network can already 
separate remarkably well 
using only positional 
information

- Charge and time roughly 
equal in terms of 
separation power

- Huge performance 
improvement by 
combination of time and 
charge at low energies
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ResNets

20

Residual Neural Networks 

ResNets introduce shortcuts with identity mapping
● Weight block learns residual F(x) instead of learning H(x) directly
● Shortcut allows gradient to propagate easily to earlier layers
● Later layers can easily set weights to zero
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Example of Triggered Graph

21

Gamma | 27.7° zenith angle | 5.9 TeV

Time 

Sh
ow

er
 a

xi
s

Sh
ow

er
 a

xi
s

ChargeTime


