Friedrich-Alexander-Universität Erlangen-Nürnberg

Deep-Learning-Based Gamma/Hadron Separation for the Southern Wide-field Gamma-ray Observatory

Martin Schneider, Christopher van Eldik, Jonas Glombitza, Franziska Leitl, Markus Pirke HEAMM workshop - 09.04.24

Introduction to SWGO

The Southern Wide-field Gamma-ray Observatory

What is SWGO?

- Array of Water Cherenkov
 Detectors (WCDs) to measures
 extensive air showers at ground
 level
- Will complement Imaging Air Cherenkov Telescopes (IACTs) like H.E.S.S. and future CTA south
- Detection principle successfully demonstrated by the **HAWC** and **LHAASO** experiments

09.04.24

Motivation

Science case and sky coverage

IACTs vs WCDs

Ground-level particle detection with >95% duty cycle and inherent wide fov

(precision and instant sensitivity from IACTs will still be unmatched)

SWGO whitepaper

	IACT Arrays	Ground-particle Arrays
Field of view	3°-10°	90°
Duty cycle	10% - 30%	>95%
Energy range	30 GeV - >100 TeV	$\sim 500 \text{ GeV} - >100 \text{ TeV}$
Angular resolution	$0.05^\circ – 0.02^\circ$	$0.4^{\circ} ext{}0.1^{\circ}$
Energy resolution	${\sim}7\%$	60% - 20%
Background rejection	>95%	90%-99.8%

Science Cases:

. . .

- PWNe, Pulsar Halos, PeVatron sources
- Fermi Bubbles, DM from GC halo

For HAWC like detectors

Common challenge with IACTs:

- Rejection of the huge background of air showers from charged, close to isotropic, cosmic rays.

SWGO still in design phase:

- Muon tagging power (and thus G/H separation) varies by detector design
- Different configurations evaluated at fixed cost

Recap Status last year in Erlangen

- Deep Learning pipeline setup for SWGO by Jonas
- First promising model trained for a single layout
- Model still relied on the Monte-Carlo shower core
- No comparison plots to the standard method yet

They are ready now, but I'll first walk you through our architecture

Slide by Harm Schorlemmer

Motivation

- Want to improve over standard machine learning methods
- Challenging to exploit underlying symmetry using Convolutional Neural Networks (CNNs)
- Signal footprint is sparse
- Good flexibility as GNNs work on non-regular grids (and perform well on them)
- Easy adaptation to different array layouts and tank designs

Example Layout for SWGO

Inputs and Normalization Exploit footprint using GNNs

Network inputs:

• Graphs of triggered stations: k-nearest neighbors (kNN) for positions (k = 7)

HEAMM workshop

09.04.24

• Features: Positions *x*, *y*, PMT time *t*, PMT signal *S* (charge)

Normalization:

- Signals: Logarithmic rescaling S' = $\log_{10}(1 + S) / \sigma$
- Positions (*x* and *y*): Simple rescaling $tank' = tank_{pos} / \sigma$
- Time: Z-score normalization $t' = (t \mu) / \sigma$

Example of Triggered Graph

Proton | 31.8° zenith angle | 7.5 TeV

9

Example of Triggered Graph

Gamma | 27.7° zenith angle | 5.9 TeV

09.04.24

Convolution in GNNs

EdgeConvolution

Basic steps of edge convolution:

- Definition of graph (here with kNN algorithm)
- Estimate edge features by convolving with kernel function h_{μ}
- Aggregation over the neighborhood

$$h_{\theta}(x_i, x_i - x_{i_j}) \rightarrow$$

<u>M. Erdmann et al</u>. (2021)

Architecture Sketch

Comparison to regular MLP

A1 double layer tank, F1 HAWC-like single layer tank

G/H Separation with Deep Learning for SWGO

HEAMM workshop 09.04.24

Different Tank designs compared

- Large double layer tank offers the best gamma/hadron separation performance using the GNN
- Can have similar separation performance using a smaller double layer tank w.r.t. single layer design
- GNN also works for the small Multi-PMT tanks

3 82 -

3 82 0

We developed a GNN algorithm for SWGO

- Triggered stations interpreted as graphs
- Promising results for G/H separation

Lots of stuff still left to explore with GNNs

- Different graph transformations (e.g. radius based graphs, ...)
- Include neighboring non-triggered stations
- Performance studies with different tanks turned off

Reconstruct other variables using Deep Learning

- GNNs can also solve regression tasks e.g. energy/direction reconstruction
- Explore transformer based approaches (Markus Pirke, Master student at ECAP)
- Go to even lower level information: PMT traces

Thank you for your Attention!

Backup

Different Detector Layouts compared

- As expected the large A7 layout has the worst performance
- Compact layouts like A5 and A6 are good at low energies but lose their advantage at high energies
- A1 layout best across the whole energy range

Different features exploredd

ResNets introduce shortcuts with identity mapping

- Weight block learns residual F(x) instead of learning H(x) directly
- Shortcut allows gradient to propagate easily to earlier layers
- Later layers can easily set weights to zero

Example of Triggered Graph

Gamma | 27.7° zenith angle | 5.9 TeV

