Karl Mannheim, Patrick Günther, Jeff Scargle, Greg Madejski, Paul Burd, Andrea Gokus

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

SLAC

Lensed images are not resolved —> light curve is a superposition of the source intrinsic light curve x(t) and delayed, magnified copies of itself.

in case of two images:
$$y(t) = x(t) + a x(t - t_0)$$
 magnification ratio and delay = lens observables

SLAC SLAC

Lensed images are not resolved —> light curve is a superposition of the source intrinsic light curve x(t) and delayed, magnified copies of itself.

Determine Delay

in case of two images:
$$y(t) = x(t) + a \, x(t-t_0)$$
 magnification ratio $% x(t) = x(t) + a \, x(t-t_0)$ and $(x,t) = x(t) + a \, x(t-t_0)$

(A)(B)(C)PeakAutoMetricdistancescorrelationoptimization

Wagner+ in prep

lightcurves

Q

lightcurves 1.0.1

pip install lightcurves 🕻 🕒

A&A 645, A62 (2021) https://doi.org/10.1051/0004-6361/202039097 © ESO 2021

Astronomy Astrophysics

Ornstein-Uhlenbeck parameter extraction from light curves of *Fermi*-LAT observed blazars

LCs and SDEs

Paul R. Burd¹, Luca Kohlhepp¹, Sarah M. Wagner¹, Karl Mannheim¹, Sara Buson¹, and Jeffrey D. Scargle²

Monthly binned Fermi-LAT LCs show characteristic OU parameters.. physical interpretation?

$u_{T+1} = u_T + \theta \Delta t (\mu - u_T) + \sigma \sqrt{\Delta t} \mathcal{N}_T$

OU Process

Drift

"draw back" to mean revision level μ at mean revision rate θ .

Diffusion

white noise described with Gaussian around 0 and variance σ^2 .

Particle Acceleration

SLAC SLAC

Charged particles interacting with turbulent waves propagating parallel to a background magnetic field satisfy a transport equation in the diffusion approximation which includes first- and second-order Fermi acceleration as well as synchrotron losses and particle injection through a source term Q. This equation is given by (Kirk et al. 1988; Schlickeiser 1989a)

$$\frac{\partial f}{\partial t} = -c\beta(z)\frac{\partial f}{\partial z} + \frac{\partial}{\partial z}\left(\kappa(z,p)\frac{\partial f}{\partial z}\right) + \\
+ \left(\frac{c}{3}\frac{d\beta}{dz}p + \frac{\partial a_1}{\partial z}\right)\frac{\partial f}{\partial p} + \frac{1}{p^2}\frac{\partial}{\partial p}\left(a_2(z,p)p^2\frac{\partial f}{\partial p}\right) - \\
- \frac{1}{p^2}\frac{\partial}{\partial p}\left(a_1(z,p)p^2\right)\frac{\partial f}{\partial z} + \frac{1}{p^2}\frac{\partial}{\partial p}\left(\frac{2}{3}k_{\rm syn}(z)p^4f\right) + \\
+ \mathcal{Q},$$
(10)

Krülls & Achterberg

Fokker Planck Equation

Evolution of probability density function over time

Fokker Planck Equation

Evolution of probability density function over time

Julius-Maximilians-

UNIVERSITÄT

Sarah M Wagner

WÜRZBURG

Fokker-Planck equation

$$\frac{\partial f(t, \mathbf{x})}{\partial t} = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \Big(A_i(t, \mathbf{x}) f(t, \mathbf{x}) \Big) +$$

$$+\sum_{i=1}^{N}\sum_{j=1}^{N}\frac{\partial^2}{\partial x_i\,\partial x_j}\left(\frac{1}{2}\sum_{k=1}^{N}B_{i,k}(t,\mathbf{x})B_{i,k}(t,\mathbf{x})\right)$$

is equivalent to (Arnold 1973)

$$\frac{d\mathbf{X}_{t,i}}{dt} = A_i(t, \mathbf{X}_t) + \sum_{j=1}^N B_{i,j}(t, \mathbf{X}_t) \frac{dW_{\tau}}{d\tau}$$

a system of Stochastic Differential Equations (SDEs)

Utilizing gamma-rays to study AGN jets

WÜRZBURG

Sarah M Wagner

Time evolution of SEDs

Julius-Maximilians-

Thank you! Any questions? sarah.wagner@uni-wuerzburg.de

Utilizing gamma-rays to study AGN jets Sarah M Wagner

delay induced by gravitational lensing can be utilized to study emission region, e.g. PKS 1830-211

self consistent model for acceleration mechanisms resulting in time resolved SEDs and light curves

OU LC

1e-8

3

Backups

PKS 1830-211 in radio

PKS 1830-211

- FSRQ, relatively close to galactic plane
- gravitationally lensed
 - two images (A & B) with core (red cross) and faint extension (yellow circle)
 - separated by ~1 arcsec
 - much fainter third image (C) neglected here

sarah.wagner@uni-wuerzburg.de

Westphal et al. (1993)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG Sarah M Wagner

Figure 2. Range of possible core locations and the jet projections in the source plane. The gray area shows the allowed range (1 σ boundary) of the core positions with time delays from 21 to 30 days (Lovell et al. 1998). The corresponding magnification ratio between the resolved images is 1.52 ± 0.05 . The blue area represents the positions of the core constrained by the magnification ratio measurement. The red circle delimits the allowed core positions derived by Sridhar (2013). Arrows A and B indicate the limiting jet projections constrained by resolved radio images.

0.0

Time in MJD

Bayesian Blocks

"Identify and characterize statistically significant variations while suppressing the inevitable corrupting observational errors" (Scargle et al. 2013)

HOP algorithm

"Hop to highest neighbor of each data point"= identify peaks Proceed downwards analogous to watershed method (Wagner 2021, Meyer 2019)

Delay imprinted in structure of light curve?

➡ apply Bayesian block and HOP analysis

Peak distances

- → detection of 33 flares ("hopjects")
- ➡ distribution of distances between all peaks

Peak distances < 90d in regular (blue) and Bayesian binning (black), total: 80

Peak distances

Auto-correlation

Self correlated signal would show peak in ACF

Discrete Correlation Function

Edelson & Krolik 1988

Consider <u>all</u> measurement pairs a_i and b_i from the two time series and compute

$$UDCF_{i,j} = \frac{(a_i - \bar{a})(b_j - \bar{b})}{\sqrt{(\sigma_a^2 - e_a^2)(\sigma_b^2 - e_b^2)}} \quad \text{detrend}$$

as well as the time shift between the corresponding times: $\Delta t_{i,j} = t_j - t_i$

To compute DCF, average over all UDCF values within a chosen bin $~\Delta au$

This can be done over the whole light curve or a certain lag range.

Discrete Correlation Function

Bias of DCF can be minimized either by -> not applying a TS filter or -> detrending and normalizing the DCF

to TS filter

A) Auto-correlation: DCF

Discrete Correlation Function (Edelson & Krolik 1988)

$$UDCF_{i,j} = \frac{(a_i - \bar{a})(b_j - \bar{b})}{\sqrt{(\sigma_a^2 - e_a^2)(\sigma_b^2 - e_b^2)}} \quad \begin{array}{l} \text{detrend per bin} \\ \text{normalize} \end{array}$$

DPG Spring Meeting — Sarah M Wagner

A) Auto-correlation: LSP

The auto-correlation approximated with the FT of the (Lomb-Scargle) Periodogram:

$$R(x) = \int_{-\infty}^{+\infty} f(u)f^*(u-x)du = \int_{-\infty}^{+\infty} |F_{LS}(s)|^2 e^{i2\pi sx} ds$$

DPG Spring Meeting — Sarah M Wagner

Metric Optimization

We know behavior of light curve based on lensing

$$y(t) = x(t) + a x(t - t_0) \longleftarrow Y(s) = X(s)(1 + ae^{-i2\pi t_0 s})$$

➡ solve for intrinsic light curve

$$x(t) = IFT \left[\frac{FT[y(t)]}{1 + a e^{-i\omega t_0}} \right]$$

- ➡ fit for lens observables
 - define a metric M to judge whether x(t) is a "good" intrinsic light curve
 - find values for lens observables a, t_0 that optimize metric

Estimated
$$(a, t_0)$$
 = argmin $M[x(t|a, t_0)]$

MO example

Many properties could be utilized as metric. One example:

→ Variance of intrinsic light curve

 $M[x(t)] = \operatorname{var}(x(t))$

Figure to the right: test case for noise-free simulated data. Known parameter values: blue dot, estimated values (minimum of variance of x(t)): red circle

Metrics for Optimization

Julius-Maximilians-

UNIVFRSITÄT

Sarah M Wagner

WIJR7BIJRG

Error of predicted time delay in dependence of true values in simulations

Overall results

solid circles are the metric optimized estimates; solid squares and lines are the bootstrap means and variances. Open symbols at similarly for the autocorrelation-based estimates using Equation

sde-crt

≡ Ç pguenth / sde-crt Q ⊉ 🖓
<> Code 💿 Issues 11 Pull requests 🕞 Actions 🖽 Projects
 भ
Solve cosmic ray transport equations using stochastic differential equations
☆ 2 stars 약 1 fork ④ 1 watching ᢪ 2 Branches 🛇 1 Tags -⁄~ Activity
Public repository

Patrick Günther

Stochastic Differential Eqs

SDE: next step of a process X_t is defined by:

$$\frac{d\mathbf{X}_{t,i}}{dt} = A_i(t, \mathbf{X}_t) + \sum_{j=1}^N B_{i,j}(t, \mathbf{X}_t) \frac{dW_{\tau}}{d\tau}$$

+

Drift e.g. "draw back" to mean Diffusion

white noise (random contribution) expressed through Wiener process

Utilizing gamma-rays to study AGN jets

Julius-Maximilians-

IR7BURG

Sarah M Wagner

sarah.wagner@uni-wuerzburg.de

Particle Acceleration

Goal: create self-consistent model with multiple time dependent acceleration mechanisms (diffusive shock acceleration, stochastic acceleration, shock-drift) described by diffusion-convection simulations

Toy Model

- 1D, single shock/acceleration region with high compression ratio
- High-energy particles (electrons) are injected at the shock front

→ Diffusive shock acceleration Constant energy gain $\frac{4}{3} \frac{\Delta u}{c}$ and loss rate $\frac{4u_d}{c}$ per cycle Electron energy density index $s = -\frac{r+2}{r-1}$

see Burd et al. 2021 A&A 645, A62

$u_{T+1} = u_T + \theta \Delta t (\mu - u_T) + \sigma \sqrt{\Delta t} \mathcal{N}_T$

Drift

"draw back" to mean revision level μ at mean revision rate θ .

Diffusion

white noise described with Gaussian around 0 and variance σ^2 .

KIPAC Tea - 18.06.2021

KIPAC Tea - 18.06.2021

KIPAC Tea - 18.06.2021

High-energy variability of the gravitationally lensed blazar PKS 1830-211

