Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

In-Ice Radio Detection of Neutrinos & Cosmic Rays

Sjoerd (rd) Bouma April 9, 2024 FCAP

Who am I?

- Sjoerd \approx 👞 rd
- PhD student on the Radio Neutrino
 Observatory in Greenland (RNO-G)
- Mostly work on reconstruction and the open-source simulation/analysis framework NuRadioMC

Radio Neutrino Detection

- In-ice shower initiated by UHE neutrino develops a negative charge excess at the shower front, giving rise to Askaryan radiation.
- At radio wavelengths (O(100 1000) MHz), **coherent** emission close to **Cherenkov angle** ($\sim 56^{\circ}$)
- At energies > 10 PeV, strong enough to detect at $\mathcal{O}(1)$ km distances in-ice radio detector for neutrinos!
- e.g. RNO-G in Greenland; ARIANNA, ARA, IceCube-Gen2 (?) in Antarctica

2010.12279

Radio Neutrino Detection

- In-ice shower initiated by UHE neutrino develops a negative charge excess at the shower front, giving rise to Askaryan radiation.
- At radio wavelengths (O(100 1000) MHz), **coherent** emission close to **Cherenkov angle** ($\sim 56^{\circ}$)
- At energies > 10 PeV, strong enough to detect at $\mathcal{O}(1)$ km distances in-ice radio detector for neutrinos!
- e.g. RNO-G in Greenland; ARIANNA,
 ARA, IceCube-Gen2 (?) in Antarctica

2010 12270

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

Neutrino reconstruction

- The **first** step in reconstructing the neutrino is finding the source of the emission: the **neutrino interaction vertex**
- Use template correlation
- Challenges:
 - Ice refractive index changes \Rightarrow radio waves 'bend downwards'.

- The **first** step in reconstructing the neutrino is finding the source of the emission: the **neutrino interaction vertex**
- Use template correlation
- Challenges:
 - Ice refractive index changes \Rightarrow radio waves 'bend downwards'.
 - This leads to a 'shadow zone'.

- The **first** step in reconstructing the neutrino is finding the source of the emission: the **neutrino interaction vertex**
- Currently one of the dominant limitations for neutrino reconstruction (2302.00054)
- Use template correlation
- Challenges:
 - Ice refractive index changes \Rightarrow radio waves 'bend downwards'.
 - This leads to a 'shadow zone'.
 - Signal not visible in all antennas!

- Use a single template, compute correlation $\rho_i(t)$ for each channel *i*;
- Take absolute value (to account for polarity)

- Use a single template, compute correlation $\rho_i(t)$ for each channel *i*;
- Take absolute value (to account for polarity)
- To determine Δt , multiply them together:

$$ho_{i,j}(\Delta t) = \max_t (|
ho_i(t)||
ho_j(t+\Delta t)|)$$

- Use a single template, compute correlation $\rho_i(t)$ for each channel *i*;
- Take absolute value (to account for polarity)
- To determine Δt , multiply them together:

$$ho_{i,j}(\Delta t) = \max_t (|
ho_i(t)||
ho_j(t+\Delta t)|)$$

- Finally, use a lookup table to convert a vertex position \vec{x} to expected time delays Δt

- Fit \vec{x} by maximizing total correlation over all antenna pairs i, j
- To avoid local minima, use an iteratively refined brute force search.

- This works well at high enough SNR, and if the signal is visible in all antennas
- At low SNR, this algorithm will **bias** towards vertex position visible in all antennas (because *some* $|\rho|$ is more than *no* $|\rho|$)
- $\Rightarrow\,$ need to account for the possibility of 'no signal'

- This works well at high enough SNR, and if the signal is visible in all antennas
- At low SNR, this algorithm will **bias** towards vertex position visible in all antennas (because *some* $|\rho|$ is more than *no* $|\rho|$)
- $\Rightarrow\,$ need to account for the possibility of 'no signal'
- Current strategy: median-subtraction:

$$ho_{i,j}'(\Delta t) = \max\left\{0,
ho_{i,j}(\Delta t) - ilde{
ho}_{i,j}
ight\}$$

- This works well at high enough SNR, and if the signal is visible in all antennas
- At low SNR, this algorithm will **bias** towards vertex position visible in all antennas (because *some* $|\rho|$ is more than *no* $|\rho|$)
- \Rightarrow need to account for the possibility of 'no signal'
- Current strategy: median-subtraction:

$$ho_{i,j}'(\Delta t) = \max\left\{0,
ho_{i,j}(\Delta t) - ilde
ho_{i,j}
ight\}$$

- Question: can we do something better?
- E.g. minimum correlation threshold for inclusion in fit, machine learning magic (see work with Luan)?

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

Cosmic Rays

- RNO-G also detects cosmic rays.
- Mostly interesting for **veto** and **calibration**
- Previous reconstruction algorithm required stringent cuts on signal-to-noise ratio $(SNR) \rightarrow optimistic estimate of$ performance.

Cosmic Rays

 - 'Standard' approach in radio: unfolding detected voltage V to estimate signal electric field E

$$V_r(f) = H_{rs}(f, \theta, \phi) E_s(f), \qquad (1)$$

- But 'actual' voltage is signal + noise: if H small, $N \gg HE$ and we end up overestimating the signal.
- \rightarrow Use a forward-folding approach instead (1903.07023): fit V instead of E

Easting [m]

Cosmic Rays

- Previous algorithm (1903.07023) used two-step algorithm:
 - 1. Fit **direction** by correlation;
 - 2. Fit emission by forward-folding.
- But (1.) does not work (well) for RNO-G triangular layout - usually one of the three antennas does not see much signal
- $\rightarrow\,$ Combine both into single fit.

Cosmic Rays

- Previous algorithm (1903.07023) used two-step algorithm:
 - 1. Fit **direction** by correlation;
 - 2. Fit emission by forward-folding.
- But (1.) does not work (well) for RNO-G triangular layout - usually one of the three antennas does not see much signal
- $\rightarrow\,$ Combine both into single fit.
 - Fraction of well-reconstructed events increases!

Conclusions

- RNO-G is an in-ice radio detector aimed at detecting UHE neutrinos (> 10 PeV)
- Already taking data!
- Reconstruction algorithms for both neutrinos and cosmic rays exist and are implemented in NuRadioMC
- ... but there is always room for improvement - clever suggestions welcome!

Deployment of first RNO-G station in 2021. Image credit C. Welling / Shovelling credit I. Plaisier

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

Backup

Recap: radio neutrinos

- In-ice shower initiated by UHE neutrino develops a negative charge excess at the shower front, giving rise to Askaryan radiation.
- At radio wavelengths (O(100 1000) MHz), **coherent** emission close to **Cherenkov angle** ($\sim 56^{\circ}$)
- At energies > 10 PeV, strong enough to detect at $\mathcal{O}(1)$ km distances in-ice radio detector for neutrinos!
- e.g. RNO-G in Greenland; ARIANNA, ARA, IceCube-Gen2 (?) in Antarctica

Recap: radio neutrinos

- In-ice shower initiated by UHE neutrino develops a negative charge excess at the shower front, giving rise to Askaryan radiation.
- At radio wavelengths (O(100 1000) MHz), **coherent** emission close to **Cherenkov angle** ($\sim 56^{\circ}$)
- At energies > 10 PeV, strong enough to detect at $\mathcal{O}(1)$ km distances in-ice radio detector for neutrinos!
- e.g. RNO-G in Greenland; ARIANNA, ARA, IceCube-Gen2 (?) in Antarctica

a17

- Three steps:

- 1. **Signal direction** direction of **emission** at the shower vertex
- 2. Viewing angle angle between the neutrino and the emitted signal
- 3. Polarization points towards the shower axis

– Three steps:

1. Signal direction: from 'triangulation'

- Three steps:

- 1. Signal direction: from 'triangulation'
- 2. **Viewing angle**: from shape of spectrum the emission **loses coherence** further from the Cherenkov angle, with the higher frequencies losing coherence first.

Three steps:

- 1. Signal direction: from 'triangulation'
- 2. **Viewing angle**: from shape of spectrum the emission **loses coherence** further from the Cherenkov angle, with the higher frequencies losing coherence first.
- 3. **Polarization**: from different antennas ('Vpol' and 'Hpol')

air

This is what it looks like...

 - ...for a single neutrino: a small 'ellipse' on-sky.

This is what it looks like...

 - ...for a single neutrino: a small 'ellipse' on-sky.

...for a **source** with multiple neutrinos detected ('point spread function').

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

Performance

Test case:

- IceCube-like flux + GZK
- RNO-G-like detector:
 - Three strings on a triangular grid
 - Trigger (phased array of 4 Vpols) and Hpol antennas at ${\sim}100$ m to maximize sensitivity
 - 3 additional upper Vpols for increased baselines
- Include both hadronic and electromagnetic showers
 - Electromagnetic showers at ultra-high energies more irregular (LPM effect) - harder to fit, & algorithm designed for hadronic showers.

Results

1. Signal direction (vertex reconstruction) limits successful reconstructions

 Mostly (but not exclusively) at low SNR, failure to reconstruct the shower maximum results in 'bad' overall reconstruction.

2. Polarization resolution is the dominant uncertainty

 Larger phase space & relatively less sensitive Hpol antennas lead polarization to dominate the angular uncertainty.

April 9, 2024

11/23

Results

- 3. Uncertainty contours are strongly asymmetric
- Dominant polarization uncertainty results in elongated ellipses.
- This means the 1D 'space angle' strongly overestimates the actual uncertainty!

Results

3. Uncertainty contours are strongly asymmetric

- Dominant polarization uncertainty results in elongated ellipses.
- This means the 1D 'space angle' strongly overestimates the actual uncertainty!
- E.g. median resolution for HAD, analysis cut: 4.9° (space angle) vs. 17 $\rm deg^2\approx 2.4^\circ$ 1D-equivalent.

Conclusions

- 1. We **can reconstruct neutrinos** with a deep in-ice radio detector! (Now we just need to find some...)
- 2. Resolution limited by vertex and polarization reconstruction
- 3. Uncertainty contours are asymmetric **can not just quote a space angle**!
 - Single event ellipse
 - Point spread function bow tie
- 4. Improvements expected!
 - Improve vertex reconstruction by better pulse finding at low SNR?
 - Dedicated algorithm for electromagnetic showers?
 - Machine learning?

- ...

direction

Example reconstruction

Systematic uncertainties

Zenith and energy dependence

- Shape of the PSF depends on local zenith
- Orientation of the polarization direction geometrically constrained \rightarrow bow-tie shape
- Area larger than single event contour, but smaller than for a symmetric PSF

Discovery potential

- Can study the source discovery potential for a source at a declination of 20°
- Shown normalized to 'all events' lower is better
- At \leq expected background flux, number of events detected is much more important than resolution.

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

The algorithm

- Unfolding: invert the detector response & propagation effects, and fit the electric field
- Advantage: (Askaryan) model-independent
- But: inflates noise where detector response is weaker, hard to combine information from multiple antennas

- Forward-folding: for each direction hypothesis, take the electric field and forward-fold it with expected effects from propagation & detector response.
- Fit to measured voltage traces.

ECAP

- Improved accuracy compared to standard unfolding, especially at low SNR 1

Sjoerd (mrd) Bouma

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search
- → Ice model + ray type + vertex position determine signal direction

Step 2: Find pulses

- Use emission vertex as input for the direction reconstruction.
- Exact pulse arrival times not known due to uncertainties in vertex, ice model, group delays...
- At low SNR, end up fitting random noise fluctuations.
- $\rightarrow\,$ identify approximate pulse windows, and include only those with amplitude $> 3.5\sigma_{noise}$

For each viewing angle, polarization and shower energy hypothesis:

- Forward-fold expected electric field with propagation & detector effects
- Determine exact pulse arrival time within each pulse window using correlation
- Compute

$$\chi^{2} = \sum_{n=1}^{n_{\text{pulses}}} \sum_{i=1}^{n_{\text{samples}}} \frac{(x_{i} - f_{i}(\theta_{\text{view}}, \phi_{\text{pol}}, E_{\text{sh}}))^{2}}{\sigma_{\text{noise}}^{2}}$$

ightarrow Obtain neutrino properties that minimize χ^2

