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Who am I?

– Sjoerd ≈ rd
– PhD student on the Radio Neutrino

Observatory in Greenland (RNO-G)
– Mostly work on reconstruction and the

open-source simulation/analysis framework
NuRadioMC
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Radio Neutrino Detection

– In-ice shower initiated by UHE neutrino
develops a negative charge excess at the
shower front, giving rise to Askaryan
radiation.

– At radio wavelengths (O(100 − 1000)
MHz), coherent emission close to
Cherenkov angle (∼ 56◦)

– At energies > 10 PeV, strong enough to
detect at O(1) km distances - in-ice radio
detector for neutrinos!

– e.g. RNO-G in Greenland; ARIANNA,
ARA, IceCube-Gen2 (?) in Antarctica

2010.12279

Sjoerd ( rd) Bouma ECAP In-Ice Radio Detection of Neutrinos & Cosmic Rays April 9, 2024 3 / 15

https://arxiv.org/abs/2010.12279


Radio Neutrino Detection

– In-ice shower initiated by UHE neutrino
develops a negative charge excess at the
shower front, giving rise to Askaryan
radiation.

– At radio wavelengths (O(100 − 1000)
MHz), coherent emission close to
Cherenkov angle (∼ 56◦)

– At energies > 10 PeV, strong enough to
detect at O(1) km distances - in-ice radio
detector for neutrinos!

– e.g. RNO-G in Greenland; ARIANNA,
ARA, IceCube-Gen2 (?) in Antarctica

105 106 107 108 109 1010 1011

neutrino energy [GeV]
10 11

10 10

10 9

10 8

10 7

10 6

E2
 [G

eV
 c

m
2  s

1  s
r

1 ]

IceCube

ANITA I - III

Auger

ARAARIANNA

Best fit UHECR, Heinze et al.
Best fit UHECR + 3 , Heinze et al.
10% protons in UHECRs (AUGER), m=3.4, van Vliet et al.
allowed from UHECRs, van Vliet et al.
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95% CL contour
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Neutrino reconstruction



Vertex reconstruction

– The first step in reconstructing the
neutrino is finding the source of the
emission: the neutrino interaction vertex

– Use template correlation
– Challenges:

– Ice - refractive index changes ⇒ radio
waves ’bend downwards’.
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Vertex reconstruction

– The first step in reconstructing the
neutrino is finding the source of the
emission: the neutrino interaction vertex

– Currently one of the dominant limitations
for neutrino reconstruction (2302.00054)

– Use template correlation
– Challenges:

– Ice - refractive index changes ⇒ radio
waves ’bend downwards’.

– This leads to a ’shadow zone’.
– Signal not visible in all antennas!

LPDAs
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Vertex reconstruction

– Use a single template, compute correlation
ρi(t) for each channel i ;

– Take absolute value (to account for
polarity)

– To determine ∆t, multiply them together:

ρi,j(∆t) = max
t

(|ρi(t)||ρj(t + ∆t)|)

– Finally, use a lookup table to convert a
vertex position ~x to expected time delays
∆t
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Vertex reconstruction

– Fit ~x by maximizing
total correlation over all
antenna pairs i , j

– To avoid local minima,
use an iteratively refined
brute force search.
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Vertex reconstruction

– This works well at high enough SNR, and if the signal is visible in all antennas
– At low SNR, this algorithm will bias towards vertex position visible in all antennas

(because some |ρ| is more than no |ρ|)
⇒ need to account for the possibility of ’no signal’

– Current strategy: median-subtraction:

ρ′
i,j(∆t) = max {0, ρi,j(∆t) − ρ̃i,j}

– Question: can we do something better?
– E.g. minimum correlation threshold for inclusion in fit, machine learning magic (see work

with Luan)?
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Cosmic Rays



Cosmic Rays

– RNO-G also detects cosmic rays.
– Mostly interesting for veto and calibration
– Previous reconstruction algorithm required

stringent cuts on signal-to-noise ratio
(SNR) → optimistic estimate of
performance.
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Cosmic Rays

– ’Standard’ approach in radio: unfolding
detected voltage V to estimate signal
electric field E

Vr (f ) = Hrs(f , θ, φ)Es(f ), (1)

– But ’actual’ voltage is signal + noise: if H
small, N � HE and we end up
overestimating the signal.

→ Use a forward-folding approach instead
(1903.07023): fit V instead of E
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Cosmic Rays

– Previous algorithm (1903.07023) used
two-step algorithm:

1. Fit direction by correlation;
2. Fit emission by forward-folding.

– But (1.) does not work (well) for
RNO-G triangular layout - usually one
of the three antennas does not see
much signal

→ Combine both into single fit.

– Fraction of well-reconstructed events
increases!
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Conclusions

– RNO-G is an in-ice radio detector
aimed at detecting UHE neutrinos
(> 10 PeV)

– Already taking data!
– Reconstruction algorithms for both

neutrinos and cosmic rays exist and are
implemented in NuRadioMC

– ... but there is always room for
improvement - clever suggestions
welcome!

Deployment of first RNO-G station in 2021. Image credit C. Welling /
Shovelling credit I. Plaisier
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Backup



Recap: radio neutrinos

– In-ice shower initiated by UHE neutrino
develops a negative charge excess at the
shower front, giving rise to Askaryan
radiation.

– At radio wavelengths (O(100 − 1000)
MHz), coherent emission close to
Cherenkov angle (∼ 56◦)

– At energies > 10 PeV, strong enough to
detect at O(1) km distances - in-ice radio
detector for neutrinos!

– e.g. RNO-G in Greenland; ARIANNA,
ARA, IceCube-Gen2 (?) in Antarctica

neutrino cosmic ray muon signal path antennas
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Direction reconstruction: the principle

– Three steps:
1. Signal direction - direction of emission

at the shower vertex
2. Viewing angle - angle between the

neutrino and the emitted signal
3. Polarization - points towards the

shower axis
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Direction reconstruction: the principle

– Three steps:
1. Signal direction: from ’triangulation’

2. Viewing angle: from shape of spectrum -
the emission loses coherence further
from the Cherenkov angle, with the higher
frequencies losing coherence first.

3. Polarization: from different antennas
(’Vpol’ and ’Hpol’)
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Direction reconstruction: the principle

This is what it looks like...

– ...for a single neutrino: a small
’ellipse’ on-sky.

– ...for a source with multiple neutrinos
detected (’point spread function’).
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Performance



Simulation setup

Test case:
– IceCube-like flux + GZK
– RNO-G-like detector:

– Three strings on a triangular grid
– Trigger (phased array of 4 Vpols) and Hpol

antennas at ∼100 m to maximize sensitivity
– 3 additional upper Vpols for increased baselines

– Include both hadronic and electromagnetic
showers

– Electromagnetic showers at ultra-high energies
more irregular (LPM effect) - harder to fit, &
algorithm designed for hadronic showers.
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Results

Analysis cut SNR> 2.5 cut in lower Vpols
Quality cut (V) SNR> 3.5 in upper Vpols
Quality cut (H) SNR> 3 in any Hpol
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Results

1. Signal direction (vertex reconstruction) limits successful reconstructions
– Mostly (but not exclusively) at low SNR, failure to reconstruct the shower maximum

results in ’bad’ overall reconstruction.
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Results

2. Polarization resolution is the dominant uncertainty
– Larger phase space & relatively less sensitive Hpol antennas lead polarization to dominate

the angular uncertainty.
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Results

3. Uncertainty contours are strongly
asymmetric
– Dominant polarization uncertainty results in

elongated ellipses.
– This means the 1D ’space angle’ strongly

overestimates the actual uncertainty!

– E.g. median resolution for HAD, analysis cut:
4.9◦ (space angle) vs. 17 deg2 ≈ 2.4◦

1D-equivalent.
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Conclusions

1. We can reconstruct neutrinos with a deep in-ice radio
detector! (Now we just need to find some...)

2. Resolution limited by vertex and polarization reconstruction
3. Uncertainty contours are asymmetric - can not just quote a

space angle!
– Single event - ellipse
– Point spread function - bow tie

4. Improvements expected!
– Improve vertex reconstruction by better pulse finding at low

SNR?
– Dedicated algorithm for electromagnetic showers?
– Machine learning?
– ...
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Example reconstruction
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Systematic uncertainties
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Zenith and energy dependence
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Point spread function

– Shape of the PSF depends on local zenith
– Orientation of the polarization direction geometrically constrained → bow-tie shape
– Area larger than single event contour, but smaller than for a symmetric PSF
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Discovery potential

– Can study the source discovery potential for a
source at a declination of 20◦

– Shown normalized to ’all events’ - lower is
better

– At ≤ expected background flux, number of
events detected is much more important than
resolution.
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The algorithm



The forward-folding approach

– Unfolding: invert the detector response & propagation effects, and fit the electric field
– Advantage: (Askaryan) model-independent
– But: inflates noise where detector response is weaker, hard to combine information from

multiple antennas

⇐ ⇐ ⇐

neutrino properties electric field in-ice propagation detector response
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The forward-folding approach

– Forward-folding: for each direction hypothesis, take the electric field and forward-fold it
with expected effects from propagation & detector response.

– Fit to measured voltage traces.
– Improved accuracy compared to standard unfolding, especially at low SNR 1

⇒ ⇒ ⇒

neutrino properties electric field in-ice propagation detector response

1arXiv:1903.07023
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Step 1: Signal direction

– ’Triangulation’: use time
differences at different antennas
to obtain emission vertex
(≈ shower maximum)

– Time differences obtained by
template correlation

– Maximize total correlation over all
channels in iterative grid search

→ Ice model + ray type + vertex
position determine signal
direction
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Step 2: Find pulses

– Use emission vertex as input for
the direction reconstruction.

– Exact pulse arrival times not
known due to uncertainties in
vertex, ice model, group delays...

– At low SNR, end up fitting
random noise fluctuations.

→ identify approximate pulse
windows, and include only those
with amplitude > 3.5σnoise
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Step 3: Fit neutrino properties

For each viewing angle, polarization and shower
energy hypothesis:
– Forward-fold expected electric field with

propagation & detector effects
– Determine exact pulse arrival time within each

pulse window using correlation
– Compute

χ2 =
∑npulses

n=1
∑nsamples

i=1
(xi −fi (θview,φpol,Esh))2

σ2
noise

→ Obtain neutrino properties that minimize χ2
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