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• A historical description of quantum gravity can be seen in many books on the subject, for example from 
Rovelli’s book “REALITY IS NOT WHAT IT SEEMS”, which describes the birth of quantum gravity 
from Bronstein’s work in 1936

Matvei Bronstein - One of 
the first researchers of 

quantum gravity in 1936

Matvei Bronstein, “Republication of: Quantum theory of weak gravitational fields”, 
Gen Relativ Gravit (2012) 44:267–283

The quantization of the spacetime metric leads to an uncertainty in the 
determination of the trajectory probed by a test particle when gravity is 
“turned on”.

Spacetime would no longer be Riemannian, but would need to be 
something else

Geometric uncertainty



This makes one  suspect that quantum 
gravity leads to fundamental modifications 
in the geometrical nature of spacetime

Atoms of spacetime

One would also suspect that quantum mechanics 
postulates need to be modified.

The uncertainty in the connection is related to an 
uncertainty in the momentum of test particles.  

This uncertainty sums up to the known Heisenberg 
uncertainty



Riemannian Geometry + corrections

"Standard” Quantum Mechanics  + corrections

Quantum Gravity corrections to 
known physics at an intermediate 

level



There exist many other examples of 
approaches to quantum gravity that 
point to departures of the 
Riemannian description of 
spacetime and its symmetries 
or the standard quantum 
mechanics/quantum field 
theory

Examples:

• Loop Quantum Gravity 
[Amelino-Camelia, da Silva, Ronco, Cesarini, Lecian, PRD (2017)]

• Horava-Lifshitz gravity 
[P. Horava, PRL (2009)]

• Causal Dynamical Triangulation 
[Ambjorn, Jurkiewicz, Loll, PRL (2005)]

• Non-critical Lioville string theory  
[Amelino-Camelia, Ellis, Mavromatos, Nanopoulos, IJMPA (1997)]

•  QG correction to Schrödinger equation 
[Kiefer, Singh, PRD (1991)]

• 3D Quantum Gravity 
[Freidel, Levine, PRL (2006)]



Example: Hypersurface Deformation Algebra from Loop Quantum Gravity

It’s possible to write the equations of general relativity in 
terms of the algebra of generators of time evolution and 
space diffeomorphism

Effectively, one approaches Loop Quantum Gravity corrections 
of GR by deforming these generators

A linearization of this deformed algebra leads to a 
modification of Poincaré algebra with mass shell

m2 ≈ E2 − P2 − λ2P4

Brahma, Ronco, Amelino-Camelia, Marciano, PRD (2017)



What is the correct approach to 
quantum gravity?

Is gravity really quantum?

Can we test these theories of QG?

What is a test of the quantum nature of spacetime?



Quantum gravitation phenomenology is a bottom-up proposal, in which the varied possibilities of modifications of 
basic and well-established equations of relativity are parameterized through corrections inspired by 
expectations of what semi-classical limits would be like or lessons from theories that quantize the gravitational 
field (or the geometry of space-time).



• Quantum gravity is a long-lived research area that has achieved enough maturity to be studied 
at a phenomenological level

The advent of QG phenomenology

• In the past 15 years, several effects predicted by approaches to quantum gravity have been 
constrained with Planck scale sensitivity

What is Planck scale sensitivity?

Quantum gravity needs experiments!



Planck scale sensitivity

• Planck scale sensitivity: 
Ability of an experimental setup or measurement technique to detect variations, parametrized by 
Planckian units, in the quantity or phenomenon being measured

• Naively, one could expect that such variations would be simply given by powers of the product of Planck 
length or the inverse Planck energy and the energy scale of a particle . 
These corrections would be too tiny to be detected as 

ℓPE
ℓ−1

P ∼ 1028 eV

• For example, considering that the most energetic cosmic rays (UHECR) reach , we would 
have the most optimistic corrections in particles interactions of the order 

1020 − 1021 eV
10−7



• Although this is correct for many observables, for a long time it was overlooked that phenomena could 
present amplifiers that would allow measurements with Planck scale sensitivity

Amplifiers

• Such amplifiers can appear both in the relativistic ultraviolet regime, 
from tens of GeV till beyond the PeV scale, or in the non-relativistic 
infrared regime.

• Amplifiers can come in many forms when coupled to the Planck length



Brownian motion

• small contributions add up to a measurable effect



• Around the beginning of the 21st century, technological advances (accuracy of 
experiments) allowed a different approach to be proposed

• If spacetime is discretized, one can expect small 
corrections in the kinematics of particles 
propagating in this background

Example: In-vacuo dispersion



• Effectively, it is possible to capture modifications of the kinematics of particles when they travel through a 
quantum spacetime

m2 = E2 − p2 +
1

EPl
(αE3+βE2p . . . ) +

1
E2

Pl
(γE4+λE2p2 . . . ) + . . .

Modified Dispersion Relations (MDR)

Inspired by 
• LQG 
[Amelino-Camelia, da Silva, Ronco, Cesarini, Lecian, PRD (2017)]

• Horava-Lifshitz gravity 
[P. Horava, PRL (2009)]

• CDT 
[Ambjorn, Jurkiewicz, Loll, PRL (2005)]

• Non-critical Lioville string theory  
[Amelino-Camelia, Ellis, Mavromatos, Nanopoulos, IJMPA (1997)] 

This idea gives rise to a wide 
phenomenology based on the modified 
trajectories that particles follow and 
modifications in processes involving 
fundamental particles in comparison 
to special relativity, which can be 
tested using cosmic messengers



EPl =
ℏc5

G
≈ 1.2 × 1028 eV

ℏ → 0

G → 0
 remains finiteEPlanck

Planck energy

So, one would find a non-trivial local Minkowskian limit

Reminiscent of the Planck scale would remain at the Minkowskian limit

Nontrivial Minkowski limit



Modified dispersion relation is not invariant under the action of the Lorentz group

To violate Lorentz simmetry

• Different inertial frames measure different 
MDRs

To deform or to extend the 
Lorentz/Poincaré symmetry

• Energy and momentum, in each frame, are related 
by a deformation of the usual Poincaré 
transformation that preserves the MDR.

Galileu Lorentz (Special Relativity)

 finite and invariantc

Doubly Special Relativity (DSR)

 finite and invariantEPlanck

 non-nullℓPlanck



ℋ = E2 − p2 + ℓEp2 + . . . = ℋ(E, p)• MDR for elementary particles

• The invariance of the new dispersion relation under the new 
frame transformation is assured if

Λ[ℋ(E, p)] = ℋ(E′ , p′ )

• Deformed Lorentz transformation E′ = Λ0,ℓ(E, p) = γ(E + vp) + 𝒪(ℓE) + . . .
p′ i = Λi,ℓ(E, p) = γ(p + vE) + 𝒪(ℓE) + . . .

The nature of the vertices of 
interactions depend on the 
conservation of the 4-momentum

Non-linear transformation

Doubly Special Relativity 
• Giovanni Amelino-Camelia, IJMPD (2002)

• João Magueijo, Lee Smolin, PRL (2002)

Λℓ(p ⊕ q) = Λℓ(p) ⊕ Λℓ(q)
pμ ⊕ qμ = pμ + qμ + ℓfμ(p, q) + . . .

It is necessary to change the composition law non-linearly



IN THE CONTEXT OF MODIFIED DISPERSION RELATIONS

LORENTZ INVARIANCE VIOLATION

MDR E2 = m2 + p2 + sη(n) pn+2

En
Pl

Superluminal propagations = 1 ⇒

Subluminal propagations = − 1 ⇒

 is the dimensionless parameter to be constrainedη(n)

pμ ⊕ qμ = pμ + qμ

No symmetries

SR Composition law
ΛSR(p ⊕ q) = ΛSR(p) ⊕ ΛSR(q)

DEFORMED SPECIAL RELATIVITY


OR


LORENTZ INVARIANCE DEFORMATION

E2 = m2 + p2 + sη(n) pn+2

En
Pl

MDR

correctionspμ ⊕ qμ = pμ + qμ+

Λℓ(p ⊕ q) = Λℓ(p) ⊕ Λℓ(q)

Modified 
Symmetries and 
Composition Law



LIV (Lorentz Invariance Violation) has been explored in Humberto’s lecture. It requires the introduction of 
new terms in the action of interactions with LIV contributions. But one proceeds using the standard 
Riemannian (Minkowski) geometrical language

Ex.: Standard Model Extension, by Kostelecký et al.

Kostelecky, Lane, PRD 1999Some entry points for SME:
Mattingly, Liv. Rev. Rel. 2005Kostelecky, Russell, Rev. Mod. Phys. 2011

Colladay, Kostelecky, PRD 1998



For modeling a deformation of Lorentz 
symmetry, one needs to consider 

alternative mathematical frameworks



NONCOMMUTATIVE 
GEOMETRY



There are many mathematical languages to describe DSR models. Since the underlying symmetry is not broken, 
but deformed, this needs to be considered when modeling these effects.

Presents deformed generators of translations, boosts and rotations ( -Poincaré algebra)κ

Mass Casimir or MDR
Poincaré algebra ( )κ → ∞

P0 ⊕ Q0 = P0 + Q0

P1 ⊕ Q1 = P1 + e−P0/kQ1

Coproduct of the algebra gives the 
modified composition law

Noncommutative geometry ( -Minkowski spacetime)κ
Lukierski, Ruegg, Nowicki, Tolstoy, PLB 1991



CURVED MOMENTUM SPACE



Curved momentum space

In Special Relativity, momentum space is flat. So, maybe the nontrivial structure of momentum space and 
interactions is related to a curvature of momentum space (Born Reciprocity Principle from 1938).

Apparently independently discovered by Snyder and followed by Russian physicists from the 50’s to the 80’s
Amelino-Camelia, Freidel, Kowalski-Glikman, Smolin, PRD 2011



DSR

QG Phase space diagram



The deformed Poincaré group is actually the group of symmetries in a maximally symmetric momentum space

Mass shell is defined from geodesic distance in momentum space

The curvature is the inverse of the Planck energy , such that when , we recover SRR = E−2
Pl EPl → ∞

Spacetime is given by the covectors in this momentum space

De Sitter momentum 
space gives -Poincaré 
symmetries

κ

Anti-de Sitter 
momentum space 
gives the momentum 
space of 2+1 QG

Gubitosi, Mercati, CQG (2013)
IPL, Amelino-Camelina, Palmisano, arXiv:2024.xxxx



FINSLER GEOMETRY 



• Relativity principle
Isometries are defined in a riemannian 
spacetime, since the dispersion relation is the 
norm of the 4-momentum

• Equivalence principle (GR)
Free particles follow riemanniana 
geodesics

• Clock postulate
Observers measure their proper time by the  
arc length function.

Relativity was mostly clarified after 
Minkowski introduced the geometric 
description of spacetime

DSR Formalism

• Relativity principle
Transformations that preserve the 
MDR ℋ

• Trajectories
Defined by dx/dt = ∂E/dp |ℋ=m2

• Proper time

?



There exists a geometric formalism that can be to Doubly Special Relativity (DSR) what riemannian 
geometry is to Special Relativity (SR)?

Minkowski Riemann

Special relativity

Paul Finsler

DSR



Algorith and general Finsler function

• The action of a free particle is of the form

S[x, p, λ]H = ∫ dμ( ·xμpμ − λ f(ℋ(x, p), m))

f = 0 ⇔ ℋ(x, p) = m2

1) Variation with respect to  enforces the dispersion relation. 

2) Variation with respect to  takes us to an equation , which must be inverted to give  and 
allow to eliminate the momenta  of the action

3) Using  on the MDR, one can find  (this can only be done for massive particles). 

4) Finally the equivalent action is obtained as .

λ

pμ
·xa = ·xa(p, λ) pμ(x, ·x, λ)

pμ

pa(x, ·x, λ) λ(x, ·x)

S[x] = S[x, p(x, ·x, λ(x, ·x)), λ(x, ·x)]H

[Girelli, Liberati, Sindoni, PRD (2007)] 
[IPL, Christian Pfeifer, PRD (2021)]



• Approximately, a modified hamiltonian has the form

H(x, p) = g(p, p) + ϵ h(x, p)
Perturbation parameter

h(x, p) = hμ1μ2....μn(x)pμ1
pμ2

. . . pμnwhere

s[x] ≐ m−1S[x]

S[x] = m∫ F(x, ·x)dμ

• It gives the following action in spacetime
F(x, ·x) = g( ·x, ·x) − ϵmn−2

hμ1μ2....μn
(x) ·xμ1 ·xμ2 . . . ·xμn

2g( ·x, ·x)n − 1
2

• The connection with Finsler geometry is realized by the identification of the arc length functional, , for 

massive observers, from which the Finsler metric  e  can be found

s[x]

gμν = ∂2(F2/2)/∂ ·xμ∂ ·xν ℋ = gμνpμpν

Constructing Finsler geometry



• Deformed trajectories are geodesics that extremize the Finsler arc-length

··xμ + Γ(x, ·x)α
μν

·xμ ·xν =
·F

F
·xμ Γα

μν(x, ·x) =
1
2

gαβ(x, ·x)(gβμ,ν(x, ·x) + gβν,μ(x, ·x) − gμν,β(x, ·x))
Coincide with the trajectories found from dx/dt = ∂E/dp |ℋ=m2

x(t) =
p

m2 + p2
t + ℓQGp t + . . .

x(t) = t + ℓQGp t + . . .

[Amelino-Camelia, Barcaroli, Gubitosi, Liberati, Loret, PRD (2014)],

[IPL, Niccolò Loret, Francisco Nettel, PRD (2017)],

Deformed light cone

Time delay

[Zhu, Ma, EPJC (2023)],



• Symmetries are deformed from Killing vectors

g(μρ∂ν)ξρ +
∂gμν

∂xρ
+

gμν

∂ ·xρ

∂ξρ

∂xσ
·xσ = 0

Ẽ ≈ E + vp

p̃ ≈ p + vE − ℓQGv (E2 +
p2

2 )

Symmetries that preserver the mass shell 
ℋ = gμν(x, ·x)pμpν

[Amelino-Camelia, Barcaroli, Gubitosi, Liberati, Loret, PRD (2014)],

[IPL, Christian Pfeifer, Pedro H. Morais, Rafael Alves Batista, Valdir B. Bezerra, JHEP (2022)]

[Pedro H. Morais, IPL, Christian Pfeifer, Rafael Alves Batista, Valdir B. Bezerra, PLB (2023)]



HAMILTON GEOMETRY



MDR m2 = H(E, p)

Metric gμν =
∂2H

∂pμ∂pν

• This metric is not invariant under reparametrizations, therefore it cannot define an arc-length

• I’m not sure if we can call this approach a geometry, since it can’t be used to measure distances

• Nevertheless, the trajectories are found from the Hamilton equations.

• Symmetries can be defined as well from a Killing equation

• There is a canonical connection as well

Barcaroli, Brunkhorst, Gubitosi, Loret, Pfeifer, PRD (2015)



It’s possible to define connections, curvature, etc. All the known geometric quantities of riemannian 
geometry  and beyond

Pedagogical book on Finsler and 
Hamilton geometries

Our review paper on applications to 
quantum gravity phenomenology

arXiv:2301.09448



SOME IMMEDIATE EFFECTS



Considering a MDR E2 = m2 + p2 + sη(n) pn+2

En
Pl

v =
∂E
∂p

=
dx
dt

= 1 + sη(n) n + 1
2

pn

En
Pl

R

This effect is present both in LIV and DSR

Modified Trajectories

Δt ∼
ΔE
EQG

RTime delay due to modified trajectories Amplifies the effect



Modified interactions

Properties of interactions depend on the dispersion relation and on the conservation law

LIV

Processes that are forbidden in SR are allowed in LIV

The energy threshold of processes of SR are strongly 
modified in LIV

Ex.: Photon decay is allowed in LIV

Opening angle between  and  can be < e+ e− 1

DSR

Processes that are forbidden in SR are still 
forbidden in DSR

The energy threshold of processes of SR are mildly 
modified in LIV

Always larger than 1

Amelino-Camelia, Liv. Rev. Rel. (2013)



Modified symmetries (absent in LIV)

Modified translations
Not only trajectories are modified, but the emission and 
detection events are distant and differ by a translation, and 
depending on the emission event, the boost cannot be 
disregarded

This modifies the prediction for time delays

Modified rotation

Usually rotations are not deformed due 
to the isotropic nature of the dispersion 
relation

Modified boost

Modifies the lifetime of 
particles measured in the 
lab frame



Beyond Modified Dispersion 
Relations



Generalized Uncertainty Principle

[ ̂xi, ̂pj] = i [1 + α
̂p

EPl
+ β

̂p2

E2
Pl

+ . . . ] δi
j

It’s possible to map this formalism into one that preserves the Heisenberg principle, but modifies the Schrödinger 
equation

Wagner, Varão, Lobo, Bezerra, PRD (2023)

This leads to several effects like violation of the equivalence principle, decoherence by a quantum spacetime, shift 
in energy levels, that are being constrained nowadays with Planck scale sensitivity.

Amelino-Camelia, Laemmerzahl, Mercati, Tino, PRL (2009)

Quantum gravity may introduce an extra degree of uncertainty in spacetime, beyond the usual Heisenberg principle 



Violation of Pauli Exclusion Principle (spin statistics) Piscicchia et al., PRL (2022)

CPT violation and decoherence Mavromatos, Lect. Not. Phys. (2005)

.

.

.Please refer to

Giovanni Amelino-Camelia, “Quantum Spacetime Phenomenology”, 
Living Reviews in Relativity 16 (2013) 5 

arXiv:0806.0339

Andrea Addazzi et al., “Quantum gravity phenomenology at the dawn of the multi-
messenger era -- A review”, Progress in Particle and Nuclear Physics 125 (2022)  103948 

arXiv:2111.05659

Spacetime fuzziness Vasileiou, Granot, Piran, Amelino-Camelia, Nature Physics (2015)
Petruzziello, Illuminati, Nature Communications (2021)

Rafael Alves Batista et al., "White Paper and Roadmap for Quantum Gravity Phenomenology 
in the Multi-Messenger Era”, arXiv:2312.00409



As a continuation of the activities of a recent COST Action, called 
“Quantum Gravity Phenomenology in the Multimessenger Approach” 
(from which Humberto and myself are part of).

The members created a Network, called QGMM, intended to bring 
closer experimentalists and theoreticians to push forward this area.

We have a newsletter to be informed about relevant information 
for our community, like calls for positions, conferences, schools, 
etc… 

https://sites.google.com/view/qgmm/newsletter/sign-up?authuser=0

https://sites.google.com/view/qgmm/newsletter/sign-up?authuser=0


Thank you! 
Obrigado!


