UNIVERSIDADE LFJ DE SÃO PAULO Instituto de Física de São Carlos

Instituto de Física de São Carlos

LIV Class 2

Humberto Martínez-Huerta Dpto. Física y Matemáticas Universidad de Monterrey humberto.martinezhuerta@udem.edu IFSC-USP - 21 Feb, 2024

INSPIRANDO TU MEJOR VERSIÓN

Module 3-2: Phenomenological Implications and Experimental Constraints

- 3.1 Observable Effects
 - + phenomena (2-2)
- 3.2 Experimental Tests:
 - ◆ implications
- 3.2 Current Constraints
 - +
 - Comparison with theoretical predictions
- 3.3 Hands-on block

Discussion on observable effects of Lorentz symmetry violation in different physical

Review of experimental methods for testing Lorentz symmetry violation and their

Overview of the current bounds on Lorentz symmetry violation from various experiments

$$\gamma \gamma_b
ightarrow e^+ e^-$$

$$egin{aligned} &\Lambda_{\gamma,n} x_{\gamma}^{n+2} + x_{\gamma} - 1 = 0 \ &x_{\gamma} = rac{E_{\gamma}}{E_{\gamma}^{ ext{LI}}}, & \Lambda_{\gamma,n} = rac{E_{\gamma}^{ ext{LI}(n+1)}}{4\epsilon} \delta_{\gamma,n}. \end{aligned}$$

The threshold equation

$$\delta_{\gamma,n} E_{\gamma}^{n+2} + 4E_{\gamma}\epsilon - m_e^2 \frac{1}{K(1-K)} = 0$$

Critical point

$$\delta_{\gamma,n}^{lim} = -4 \frac{\epsilon}{E_{\gamma}^{LI \ (n+1)}} \frac{(n+1)^{n+1}}{(n+2)^{n+2}}$$

Background:

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_\gamma K(1-K)} - \frac{\delta_{\gamma,n} E_\gamma^{n+1}}{4}$$

$$\begin{array}{ll} \Lambda_n < 0 & \mbox{Threshold-shifts} \\ \Lambda_n = 0 & \mbox{LI scenario} \\ \Lambda_n > 0 & \mbox{+2nd Threshold} \end{array}$$

Phys. Rev. D 95, 063001 (2017)

Gamma-rays from jet of Quasar

1 .

*

E. Moura

Extragalactic Background Light (EBL)

$\begin{array}{c} Light \ (0.1 \ \text{-}1000 \ \mu\text{m}) \ emitted \ throughout \ life \\ in \ the \ Universe. \end{array}$

It hasn't been fully explained yet.

Forward evolution models: From initial conditions and extrapolated to the present.

Gilmore et al (2012)

Backward evolution: Extrapolates the current state of the data to the past. Franceschini et al. (2008)

Empirical models / observed evolution. Domínguez et al. (2011)

PP

 $\tau_{\gamma}(E_{\gamma}, z, n) = \int_{0}^{z_{s}} \mathrm{d}z \frac{\mathrm{d}l(z)}{\mathrm{d}z}$

 $\times \int_{-\infty}^{\infty} d\epsilon \ n_{\gamma}(\epsilon, z)$

 $\times \int^{1} d(\cos\theta) \frac{1 - \cos\theta}{2} \sigma(E_{\gamma}, \epsilon, z, \cos\theta)$ J_{-1}

-COSMOLOGY -The distance element

-ASTROPHYSICS-**Density of BKG photons**

-PARTICLE PHYSICS-Pair Production cross section Breit & Wheeler 1934; Heitler 1960

$$\tau_{\gamma}(E_{\gamma}, z, n) = \int_{0}^{z_{s}} \mathrm{d}z \frac{\mathrm{d}l(z)}{\mathrm{d}z}$$

$$\frac{dl(z)}{dz} = \frac{c}{H_0} \frac{1}{(1+z) \left[\Omega_{\Lambda} + \Omega_{M} (1+z)^3\right]^{1/2}},$$

 $H_0 \simeq 70 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$,

$$\Omega_\Lambda \simeq 0.7$$

 $\Omega_{\rm M}\simeq 0.3$

-COSMOLOGY -The distance element

-ASTROPHYSICS-Density of BKG photons

-PARTICLE PHYSICS-Pair Production cross section Breit & Wheeler 1934; Heitler 1960

Breit-Wheeler cross-section

$$\sigma_{\gamma\gamma}(E, \epsilon, \varphi) = rac{2\pi lpha^2}{3m_{
m e}^2} W(eta)$$
 $\simeq 1.25 \times 10^{-25} W$

Breit & Wheeler 1934; Heitler 1960

$$\times \int_{-1}^{1} d(\cos\theta) \frac{1 - \cos\theta}{2} \sigma$$

$W(\beta) \,\mathrm{cm}^2$,

 $\epsilon(E_{\gamma},\epsilon,z,\cos\theta)$

-COSMOLOGY -The distance element

-ASTROPHYSICS-**Density of BKG photons**

-PARTICLE PHYSICS-Pair Production cross section Breit & Wheeler 1934; Heitler 1960

$\lambda = (cz)/(\mathrm{H}_0 \tau_{\gamma})$

To the center of the Galaxy: 8.5e-6 Mph

$\lambda = (cz)/(\mathrm{H}_0 \tau_{\gamma})$

To the center of the Galaxy: 8.5e-6 Mph

Attenuation

RA: 253.4667 DEC: 39.7603

For a given EBL model at z=0.034 Find:

-The Optical Depth -Attenuation

ebltable

Prerequisites

Python 3.5 or higher and the following packages:

- numpy
- scipy
- astropy

Installation

You can use pip to install the package:

pip install ebltable

Example scripts and notebooks are provided on the github page in the example/ and notebooks/ folder, https://github.com/me-manu/ebltable

License

ebltable is distributed under the modified BSD License.

Copyright (c) 2017, Manuel Meyer

Available models

EBL model id	Model ref.	
dominguez	Dominguez et al. (2012)	
dominguez-upper	Dominguez et al. (2012)	upp
dominguez-lower	Dominguez et al. (2012)	low
franceschini	Franceschini et al. (2008)	http
finke	Finke et al. (2012)	http
finke2022	Finke et al. (2022)	http
saldana-lopez	Saldana-Lopez et al. (2021)	http
saldana-lopez-err	Saldana-Lopez et al. (2021) uncertainties	http
kneiske	Kneiske & Dole (2010)	
gilmore	Gilmore et al. (2012)	fidu
gilmore-fixed	Gilmore et al. (2012)	fixe
inoue	Inuoe et al. (2013)	http
inoue-low-pop3	Inuoe et al. (2013)	Low
inoue-up-pop3	Inuoe et al. (2013)	Hig
cuba	Haardt & Madau (2012)	http

Web	link

per uncertainty bound

er uncertainty bound

p://www.astro.unipd.it/background/

p://www.phy.ohiou.edu/~finke/EBL/

os://zenodo.org/record/702307

ps://www.ucm.es/blazars/ebl

os://www.ucm.es/blazars/ebl

icial model

ed model

p://www.slac.stanford.edu/~yinoue/Download.html

v pop 3 contribution http://www.slac.stanford.edu/~yinoue/Download.html

h pop 3 contribution http://www.slac.stanford.edu/~yinoue/Download.html

p://www.ucolick.org/~pmadau/CUBA/HOME.html

RA: 253.4667 DEC: 39.7603

For a given EBL model at z=0.034

Find:

-The Optical Depth -Attenuation

E3: Compare 3 different models

EBL model id	Model ref.	
dominguez	Dominguez et al. (2012)	
dominguez-upper	Dominguez et al. (2012)	upp
dominguez-lower	Dominguez et al. (2012)	lowe
franceschini	Franceschini et al. (2008)	http
finke	Finke et al. (2012)	http
finke2022	Finke et al. (2022)	http
saldana-lopez	Saldana-Lopez et al. (2021)	http
saldana-lopez-err	Saldana-Lopez et al. (2021) uncertainties	http
kneiske	Kneiske & Dole (2010)	
gilmore	Gilmore et al. (2012)	fidu
gilmore-fixed	Gilmore et al. (2012)	fixe
inoue	Inuoe et al. (2013)	http
inoue-low-pop3	Inuoe et al. (2013)	Low
inoue-up-pop3	Inuoe et al. (2013)	Higl
cuba	Haardt & Madau (2012)	http

Web link

- per uncertainty bound
- er uncertainty bound
- o://www.astro.unipd.it/background/
- o://www.phy.ohiou.edu/~finke/EBL/
- os://zenodo.org/record/702307
- os://www.ucm.es/blazars/ebl
- os://www.ucm.es/blazars/ebl
- icial model
- ed model
- o://www.slac.stanford.edu/~yinoue/Download.html
- v pop 3 contribution http://www.slac.stanford.edu/~yinoue/Download.html
- h pop 3 contribution http://www.slac.stanford.edu/~yinoue/Download.html
- o://www.ucolick.org/~pmadau/CUBA/HOME.html

Attenuation

Attenuation

Test of Lorentz invariance violation

0

Corrections to known processes $\gamma\gamma_b \rightarrow e^+e^-$

Test of Lorentz invariance violation

Corrections to known processes $\gamma\gamma_b \rightarrow e^+e^-$

PP

 $\gamma\gamma_b
ightarrow e^+e^-$

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_\gamma K(1-K)} - \frac{\delta_{\gamma,n} E_\gamma^{n+1}}{4}$$

Allowed region change with the LIV parameter and the Energy

 $\gamma\gamma_b
ightarrow e^+e^-$

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_{\gamma}K(1-K)} - \frac{\delta_{\gamma,n}E_{\gamma}^{n+1}}{4}$$

... deeper LIV effects

Optical Depth + LIV

 $\tau_{\gamma}(E_{\gamma}, z, n) = \int_0^z dz \frac{c}{H_0(1+z)\sqrt{\Omega_{\Lambda} + \Omega_M(1+z)^3}}$

 $\times \int_{\epsilon_{th}}^{\infty} d\epsilon \ n_{\gamma}(\epsilon, z)$ LIV $\times \int^{1} d(\cos\theta) \frac{1 - \cos\theta}{2} \sigma(E_{\gamma}, \epsilon, z, \cos\theta)$ \boldsymbol{Z} J_{-1}

-COSMOLOGÍA -The distance element

-ASTRONOMÍA-**Density of BKG photons**

-FÍSICA DE PARTÍCUAS-Pair Production cross section Breit & Wheeler 1934; Heitler 1960

RA: 253.4667 DEC: 39.7603

For a given EBL model at z=0.034 Find:

- The Optical DepthAttenuation
- Include LIV_th
- Try different z, ELIV, n....

What can you say about the differences?

EBL-Attenuation + LIV

The intensity of the LIV effect depends on

- E_{γ} : The energy of the γ -ray
- ELIV: The LIV energy scale
- z: The distance of the source.

More photons!!

What would be the difference in the Optical Depth?

 $\gamma\gamma_b
ightarrow e^+e^-$

What are the blue dots?

 $\gamma\gamma_b
ightarrow e^+e^-$

$$\frac{m_e}{\omega} \ll 1, \quad \frac{\omega_b}{\omega} \ll 1, \qquad 4\omega\omega_b - \frac{m_e^2}{K(1-K)} = \left[\alpha_n - \alpha_{n+}K^{n+1} - \alpha_{n-}(1-K)^{n+1}\right]\omega^{n+2}.$$

Let be:

 $x = \frac{4\omega_b K(1-K)}{m_e^2} \omega := \frac{1}{\omega_0} \omega,$

$$\Lambda_n := \frac{\omega_0^{n+1}}{4\omega_b} \left[\alpha_n - \alpha_{n+} K^{n+1} - \right]$$

$$|\Lambda_n x^{n+2} - x +$$

 $\gamma\gamma_b
ightarrow e^+e^-$

$$\frac{m_e}{\omega} \ll 1, \quad \frac{\omega_b}{\omega} \ll 1, \qquad 4\omega\omega_b - \frac{m_e^2}{K(1-K)} = \left[\alpha_n - \alpha_{n+}K^{n+1} - \alpha_{n-}(1-K)^{n+1}\right]\omega^{n+2}.$$

Let be:

 $x = \frac{4\omega_b K(1-K)}{m_e^2} \omega := \frac{1}{\omega_0} \omega,$

$$\Lambda_n := \frac{\omega_0^{n+1}}{4\omega_b} \left[\alpha_n - \alpha_{n+} K^{n+1} - \right]$$

$$|\Lambda_n x^{n+2} - x +$$

$$\gamma \gamma_b
ightarrow e^+ e^-$$

$$egin{aligned} &\Lambda_{\gamma,n} x_{\gamma}^{n+2} + x_{\gamma} - 1 = 0 \ &x_{\gamma} = rac{E_{\gamma}}{E_{\gamma}^{ ext{LI}}}, & \Lambda_{\gamma,n} = rac{E_{\gamma}^{ ext{LI}(n+1)}}{4\epsilon} \delta_{\gamma,n}. \end{aligned}$$

The threshold equation

$$\delta_{\gamma,n} E_{\gamma}^{n+2} + 4E_{\gamma}\epsilon - m_e^2 \frac{1}{K(1-K)} = 0$$

Critical point

$$\delta_{\gamma,n}^{lim} = -4 \frac{\epsilon}{E_{\gamma}^{LI \ (n+1)}} \frac{(n+1)^{n+1}}{(n+2)^{n+2}}$$

Background:

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_\gamma K(1-K)} - \frac{\delta_{\gamma,n} E_\gamma^{n+1}}{4}$$

$$\begin{array}{ll} \Lambda_n < 0 & \mbox{Threshold-shifts} \\ \Lambda_n = 0 & \mbox{LI scenario} \\ \Lambda_n > 0 & \mbox{+2nd Threshold} \end{array}$$

Phys. Rev. D 95, 063001 (2017)

$$\gamma \gamma_b \rightarrow e^+ e^-$$

$$\begin{split} &\Lambda_{\gamma,n} x_{\gamma}^{n+2} + x_{\gamma} - 1 = 0 \\ &x_{\gamma} = \frac{E_{\gamma}}{E_{\gamma}^{\text{LI}}}, \qquad \Lambda_{\gamma,n} = \frac{E_{\gamma}^{\text{LI}(n+1)}}{4\epsilon} \delta_{\gamma,n}. \end{split}$$
threshold equation
$$10^{17}$$

$$\delta_{\gamma,n} E_{\gamma}^{n+2} + 4E_{\gamma}\epsilon - m_e^2 \frac{1}{K(1-K)} = 0.$$

Critical point

Th

$$\delta_{\gamma,n}^{lim} = -4 \frac{\epsilon}{E_{\gamma}^{LI \ (n+1)}} \frac{(n+1)^{n+1}}{(n+2)^{n+2}}$$

Background:

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_{\gamma}K(1-K)} - \frac{\delta_{\gamma,n}E_{\gamma}^{n+1}}{4}$$

 10^{15}

 $\gamma\gamma_b
ightarrow e^+e^-$

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_{\gamma}K(1-K)} - \frac{\delta_{\gamma,n}E_{\gamma}^{n+1}}{4}$$

EBL-Attenuation + LIV

The intensity of the LIV effect depends on

- E_{γ} : The energy of the γ -ray
- ELIV: The LIV energy scale
- z: The distance of the source.

More photons!!

LIV-Horizon

Phenomenology

The distance of the source.

The most updated dataset composed of 111 energy spectra of 38 different sources in TeVCat

only 18 spectra from 6 sources have the potential to show LIV effects (constraint LIV)

Experiment

More photons!!

LIV-Horizon

Phenomenology

The most updated dataset composed of 111 energy spectra of 38 different sources in TeVCat

Irrespectively of many tested **uncertainties** Choices of the EBL models Model of the intrinsic spectrum Energy resolution Selection of spectra Selection of energy bins to be used in the

Experiment

Source	Redshift	Experiment	Spectrum	Refe
Markarian 421	0.031	HEGRA	1999–2000	[4
			2000-2001	[4
		HESS	2000	[4
		VERITAS	2006-2008	[5
			(low)	
			2006-2008	[5
			(mid)	
		TACTIC	2005-2006	[5
			2009-2010	[5
Markarian 501	0.034	TACTIC	2005-2006	[5
		ARGO-YBJ	2008-2011	[5
			2011 (flare)	[5
		HESS	2014 (flare)	[3
1ES 1959 + 650	0.048	Whipple	2002 (flare)	[5
		HEGRA	2002 (low)	[5
			2002 (high)	[5
H 1426 + 428	0.129	HEGRA	1999–2000	[5
1ES 0229 + 200	0.1396	HESS	2005-2006	[5
		VERITAS	2010-2011	[5
1ES 0347-121	0.188	VERITAS	2006	[6

n = 1

10

E⁽¹⁾_{LIV} [10²⁸ eV]

10²

- L -

Lang, Martínez-Huerta and de Souza Phys.Rev. D99 (2019) no.4.

More photons!!

only 18 spectra from 6 sources have the potential to show LIV effects (constraint LIV)

calculation of the intrinsic energy spectra

LIV-Horizon

Phenomenology

The most updated dataset composed of 111 energy spectra of 38 different sources in TeVCat

only 18 spectra from 6 sources have the potential to show LIV effects (constraint LIV)

- Choices of the EBL models
- Model of the intrinsic spectrum
- Energy resolution
- Selection of spectra
- Selection of energy bins to be used in the calculation of the intrinsic energy spectra

Experiment

Source	Redshift	Experiment	Spectrum	Refe
Markarian 421	0.031	HEGRA	1999–2000	[4
			2000-2001	[4
		HESS	2000	[4
		VERITAS	2006-2008	[4
			(low)	
			2006-2008	[4
			(mid)	
		TACTIC	2005-2006	[4
			2009-2010	[4
Markarian 501	0.034	TACTIC	2005-2006	[4
		ARGO-YBJ	2008-2011	[4
			2011 (flare)	[4
		HESS	2014 (flare)	[3
1ES 1959 + 650	0.048	Whipple	2002 (flare)	[4
		HEGRA	2002 (low)	[4
			2002 (high)	[4
H 1426 + 428	0.129	HEGRA	1999–2000	[4
1ES 0229 + 200	0.1396	HESS	2005-2006	[4
		VERITAS	2010-2011	[4
1ES 0347-121	0.188	VERITAS	2006	[6

More photons!!

Irrespectively of many tested uncertainties

	Franceschini		Dominguez		Gilmore				
	2σ	3σ	5σ	2σ	3σ	5σ	2σ	3σ	5σ
$E_{\rm LIV}^{(1)} \left[10^{28} \ {\rm eV} \right]$	12.08	9.14	5.73	6.85	5.62	4.17	14.89	9.80	4.74
$E_{\rm LIV}^{(2)} \left[10^{21} \ {\rm eV} \right]$	2.38	1.69	1.42	1.56	1.40	1.14	2.17	1.78	1.31

Analysis

Work cases

Two possible scenarios

* Finding LIV signal

Input LIV simulations and find CTA detection.

Excluding LIV signal *

Input LI simulations and find CTA LIV rejection.

Work cases

* Finding LIV signal

Input LIV simulations and find CTA detection.

* Excluding LIV signal

Input LI simulations and find CTA LIV rejection.

Two possible scenarios

1. LIV- Simulation

2. Find the best Fit-LIV

3. Find the best **Fit**-LI

4. LIV signal significance

1. LIV- Simulation

2. Find the best **Fit**-LI

3. Find the best **Fit**-LIV

4. LIV signal significance

Free parameters

$N_0 [TeV^{-1} cm^2 s^{-1}]$

Index

Ec [TeV]

- 1. LIV- Simulation
- 2. Find the best **Fit**-LI
- 3. Find the best **Fit**-LIV
- 4. LIV signal significance

Free parameters ELIV [GeV] $N_0 [TeV^{-1} cm^2 s^{-1}]$ Index Ec [TeV]

1. LIV- Simulation

2. Find the best **Fit**-LI

3. Find the best **Fit**-LIV

4. LIV signal significance

X

X

- 1. LIV- Simulation
- 2. Find the best **Fit**-LI
- 3. Find the best **Fit**-LIV
- 4. LIV signal significance

136

Probing physics up to the Planck scale and above

CTA potential to find a LIV signal *

Input LIV simulations and find CTA detection.

1. LIV- Simulation

u(E))]

Œ

sorptic

Abs

137

Simulation of Mrk501 with $E_{cut} = 50$ TeV assuming LIV with $E^{(2)}_{LIV} = 10^{21} \text{ eV}$

> Agreement between best-fit parameters and the simulated true values.

CTA Consortium. **JCAP 02 (2021) 048**

Probing physics up to the Planck scale and above

CTA potential to find a LIV signal *

Input LIV simulations and find CTA detection.

1. LIV- Simulation

4. LIV signal significance

Simulation of Mrk501 with $E_{cut} = 50$ TeV assuming LIV with $E^{(2)}_{LIV} = 10^{21} \text{ eV}$

> Agreement between best-fit parameters and the simulated true values.

CTA Consortium. JCAP 02 (2021) 048

Work cases

Finding LIV signal

Input LIV simulations and find CTA detection.

Excluding LIV signal *

Input LI simulations and find CTA LIV rejection.

Two possible scenarios

- 1. LI- Simulation
- 2. Find the best **Fit**-LI
- 3. Find the best **Fit**-LIV
- 4. Exclusion significance

Different step from the previous scenario

Different step from the previous scenario

- 1. LIV- Simulation
- 2. Find the best **Fit**-LI
- 3. Find the best **Fit**-LIV
- 4. Exclusion significance

Simulation cross-check

Simulation of 1ES0229+200 with $E_{cut} = 50 \text{TeV}$ and LI propagation.

The LIV models excluded at 2 σ for n = 1 and 2 are also shown for comparison

Confidence level for the rejection of LIV energy scales for n=1 and n=2,

including the **EBL systematic error**

143

Strong LIV Exclusion limits in the photon sector by astroparticle tests

Test of Lorentz invariance violation

0

Corrections to known processes $\gamma\gamma_b \rightarrow e^+e^-$

Test of Lorentz invariance violation

Corrections to known processes $\gamma\gamma_b \rightarrow e^+e^-$

 $\gamma\gamma_b
ightarrow e^+e^-$

$$E_{\gamma_b}^{th} = \frac{m_e^2}{4E_{\gamma}K(1-K)} - \frac{1}{4}\delta_n^{tot} E_{\gamma}^{n+1}$$

Allowed region change with the LIV parameter and the Energy

∟1,

if LIV is such that, $\delta_n = \delta_{\gamma,n} = \delta_{\pm,n}$, for the scenario with K =

when LIV is considered only (or dominated by) the photon sector, i.e. $\delta_{\pm} = 0$ (or $\delta_{\gamma} \gg \delta_{\pm}$),

factor of $(1 - \frac{1}{2^n})$ between this two set of scenarios.

Critical points

 $\delta_n^{\text{tot}} = \delta_{\gamma,n} \text{ (or } \approx \delta_{\gamma,n} \text{).}$

Martínez, Lang, and Souza arXiv:1901.03205 BHCB2018

RA: 253.4667 DEC: 39.7603

For a given EBL model at z=0.034

Find:

Image: Second Content of Conte Attenuation

Include LIV_th

Try different $\mathbf{\overline{\mathbf{V}}}$ Ζ, ĭ ELIV, ⊠ n....

What can you say about the differences?

What about the superluminal scenario?

E4: What would the attenuation look like with LIV and without for a source with the following characteristics

 $\phi_{\rm int}(E_{\gamma}) = \phi_0 (E_{\gamma}/E_0)^{-\Gamma} \exp\left(-\frac{E_{\gamma}}{E_{\rm cut}}\right),$ $E_{cut} = 40TeV$ n Г $E_{cut} = 60TeV$ 2.19

MH.	. Ulrich, et al. ApJ 198, 261-
E_0	Normalization
[TeV]	$[/\mathrm{cm}^2\mathrm{s}\mathrm{TeV}]$
1.42	8.27×10^{-12}

E4*: Use the LIV attenuation from ebltable in a gammapy analysis

z=0.034

E 5: Modify the ebl_from_model to use (+) scenario

bltab	l e / e	ebltable	/ ebl	_from_	_model.p
Code	E	Blame	557	lines	(452 10
4		import	OS		
5		import	ast	ropy.ur	nits <mark>as</mark>
6		import	ast	ropy. <mark>c</mark>	onstants
7		from c	olle	ctions	.abc <mark>imp</mark>
8		from s	cipy	.integ	rate <mark>imp</mark>
9		from c	s.pa	th <mark>imp</mark> o	<mark>ort</mark> joir
10		from a	stro	oy.cosr	nology <mark>i</mark>
11		from s	cipy	.specia	al impor
12		from .	inte	rpolate	e import
13		#			
14					
15		# plar	nck ma	ass in	eV
16		Mpl_eV	<mark>/</mark> = (I	np.sqrt	t(c.hbar
17		# elec	tron	mass :	in eV
18		m_e_eV	/ = ((c.m_e >	* c.c **
19		# Avai	lable	e model	ls
20	\sim	models	; = ('france	eschini'
21				'kneis	ke',
22				'doming	guez',
23				'doming	guez-upp
24				'doming	guez-low
25				'saldar	na-lopez
26				'saldar	na-lopez
27				'gilmo	re',
20		-	-	Lailmor	ro fivor

ру

oc) · 19.1 KB

u s as c port Iterable port simps n import Planck15 as cosmo rt spence # equals gsl_sf_dilog(1-z) t GridInterpolator

* c.c / c.G) * c.c ** 2.).to('eV').value

x 2.).to('eV').value

per', ver', z', z-err',

.

EBL-Attenuation + LIV

The intensity of the LIV effect depends on

- E_{γ} : The energy of the γ -ray
- ELIV: The LIV energy scale
- z: The distance of the source.

Less photons!!

 $\gamma\gamma_b
ightarrow e^+e^-$

