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We recall the main differences between LIV and DSR

LORENTZ INVARIANCE VIOLATION

MDR E2 = m2 + p2 + sη(n) pn+2

En
Pl

Superluminal propagations = 1 ⇒

Subluminal propagations = − 1 ⇒

 is the dimensionless parameter to be constrainedη(n)

pμ ⊕ qμ = pμ + qμSR Composition law

DEFORMED SPECIAL RELATIVITY


OR


LORENTZ INVARIANCE DEFORMATION

E2 = m2 + p2 + sη(n) pn+2

En
Pl

Modified 
Symmetries and 
Composition Law

MDR

correctionspμ ⊕ qμ = pμ + qμ+

Λℓ(p ⊕ q) = Λℓ(p) ⊕ Λℓ(q)
ΛSR(p ⊕ q) = ΛSR(p) ⊕ ΛSR(q)



These may seem very simple modifications, and you may wonder that they are not that important after all.

This is a wrong assumption, otherwise I wouldn’t be here

In the following, I’m going to give you some examples of astrophysical observables and discuss how that are 
affected by these different assumptions.

We’re discussing time delays, energy thresholds, propagation effects, time dilation



Time delays



• Around the beginning of the 21st century, technological advances (accuracy of 
experiments) allowed a different approach to be proposed

• If spacetime is discretized, one can expect small 
corrections in the kinematics of particles 
propagating in this background

Example: In-vacuo dispersion



QG phenomenology in the UV - in-vacuo dispersion

• A common intuition of QG is that a quantum spacetime would behave like a medium where particles 
propagate, whose irregularities would be of Planckian size (or of whatever the QG ruling scale is)

• Time-delays from GRBs, AGNs, Pulsars

Propagation 
distance is an 
amplifier to tiny 
local effects

E2 − p2 − ξ(n)(ℓ(n)
P p)np2 = 0 Some QG approaches predict this effective behavior 

LQG: Gambini, Pullin PRD 1999, Hořava–Lifshitz: Horava PRL 2009

c(E) = 1 + ξ(n) n + 1
2

(ℓ(n)
P E)n Δt = ξ

1 + n
2H0

(ℓ(n)
P E)n ∫

z

0

(1 + z′ )n

Ωm(1 + z′ )3 + ΩΛ

dz′ 

ξ(1) < 0.13 Vasileiou et al., PRD (2013) The most used formula (Jacob-Piran)



In the LIV scenario, only the trajectory of the hard 
photon is modified. And this produces the time delay

E2 −
p2

a(t)2
− ξ(n)ℓ(n) p(n+2)

a(t)n+2
= 0

If one calculate the shift in the time coordinate due to the different trajectories, one finds

Δt = ξ(n) 1 + n
2H0

(ℓ(n)
P E)n ∫

z

0

(1 + z′ )n

Ωm(1 + z′ )3 + ΩΛ

dz′ 

Assume a minimal coupling



However, if the translations in spacetime are locally modified, one can construct infinitesimal 
communications between frames until the arrival at the detector

If , one finds the Jacob-Piran 
LIV formula

η2 = η3 = 0

If in each infinitesimal step, the different frames 
are connected by deformed translations (since we 
have deformed symmetries), one finds a different 
formula at first order in the Planck energy

Process from the source 
perspective

LIV

DSR

Amelino-Camelia, Frattullilo, Gubitosi, Rosati, Bedic, JCAP (2024)

The effect of translations also accumulate over distance. 
That’s why they are as important as the effects due to 
trajectories.



Δt = η
ΔE
MPl ∫

z

0

dz̄(1 + z̄)
H(z̄)

LIV

DSR



This is the time delay formula for , 
, 

η1 = 0
η2 = 4 η3 = − 3

One can have a myriad of other behaviors based on different values of . This gives rise to a rich 
phenomenology that may change the bounds currently set on the Planck scale

η2, η3

What is super and subluminal?

Our proposal using a different slicing 
based on anti-de Sitter symmetries

IPL, arXiv:2401.03810

We can have a delay even 
without a MDR at first order

DSR

LIV



According to the coordinates of the observer that detects the time delay, the emission seems to be non-local.

The hard photon seems to be emitted at a different position (in comparison to the soft one) from the point of 
view of the detector frame.

Amelino-Camelia, Marcianò, 
Matassa, Rosati, PRD (2012)

Apparent non-locality

Mathematical curiosity



A way to take into account these new effects are at preliminary stages of phenomenological scrutiny.

Preliminary results by other authors show that, using simulated data sets, a comparison of LIV formula and DSR 
formulas is realizable 

This worked analyzed only the simplest DSR 
case. 
 
There’s a whole new world of 
modifications to be analyzed

LIV

DSR

We can distinguish LIV from DSR



Challenge: Can deformed boosts give an 
extra contribution with a completely different 
energy/redshift dependence?

v



Threshold effects



Threshold effects have been the matter of discussion of Humberto’s lectures, in which the expected behavior of 
interactions get modified in the presence of modified dispersion relations.

Also here, there are two scenarios that can be analyzed.

LIV

E2 = m2 + p2 + sη(n) pn+2

En
Pl

pμ ⊕ qμ = pμ + qμ

DSR

E2 = m2 + p2 + sη(n) pn+2

En
Pl

pμ ⊕ qμ = pμ + qμ + 𝒪(ℓ, p, q)

Λℓ(p ⊕ q) = Λℓ(p) ⊕ Λℓ(q)



LIV

LIV has been a matter of debate in the past days, and we have discussed some processes that are forbidden in 
SR and become allowed in LIV.

For example, photon decay becomes allowed above certain energies and 
the detection of photons above certain energy (meaning that they’re not 
decaying) allows one to put strong constraints on LIV

We also can have processes that are allowed only after a certain energy threshold that is different from the SR 
one.  
Even inducing the existence of windows with upper and lower thresholds.



A spacetime full of “defects” can make particles disappear



QG phenomenology in the UV - anomalous thresholds

• Threshold effects (Lorentz symmetry 
violation)

ξ(1) ≤ 5.4 × 10−4

ξ(2) ≤ 1.5 × 105

ξ(n) ≤
1
ℓP

(4m2
e )1/n

E1+2/n
γ

The fact that we 
detect photons 
according to SR at a 
such energy allows the 
derivation of an 
inequality that allows 
to put strong 
constraints



DSR

On the other hand, if one calculates the modified threshold energies, they are negligible.

For a two-body decay, we have k = p ⊕ q
p

q

m2 = p2
0 − p2

1 − ℓp0p2
1

E(+)
ν =

Eπ(M2 − m2
μ)

M2
+ 𝒪(ℓEπ)

E(−)
ν = 𝒪(ℓEπ)

IPL, Pfeifer, Morais, Alves Batista, Bezerra, JHEP (2022)

So, there’s a no significant effect. This is completely different 
from the LIV case

This means that you don’t have to modify limits of 
integration when calculating distributions or other quantities



2+2 process

EDSR
th =

Amplification

Λ ∝ EPl

As can be seen, the DSR term does not present the amplification that the LIV scenario furnishes

This same framework could be used to analyze the photon splitting γ → 3γ

To analyze these effects at the Planck scale, LIV is the only appealing case phenomenologically.

Unless the parameter  of the DSR scenario is smaller than the Planck energy.Λ

Carmona, Cortés, Pereira, Relancio, Reyes, PoS 
CORFU2021 (2022)



Time dilation



Now we know that, regarding time delays, DSR deformed translations contribute as much as the deformed 
trajectories (presented in LIV and DSR). 

You may wonder what kind of effects are present due to deformed boosts.

In any case, the time delay is a prediction of both LIV and DSR. Such difference would be distinguishable 
after the actual detection any sort of Planck scale-induced time delay. 

Therefore, from a practical point of view, I would say that considering a hierarchy of experimental challenges, 
the mere detection of a time-delay considering the LIV scenario (Jacob-Piran formula) is the top priority  
 
and after that, one can think about distinguishing LIV and DSR.



In LIV, one has the standard SR boosts.Deformed boosts are only present in DSR.

Deformed boosts can be found from various techniques. But we have discovered a way that is very simple by 
the use of Finsler geometry.

τ = ∫ F(x, ·x)dλ = ∫ ( ημν
·xμ ·xν + 𝒪(ℓ ·x)) dλ = ∫ ( 1 − v2 + 𝒪((ℓmv)n)) dt

Lab time

τ = γ−1 (1 + ℓnf(m, γ)) t t = γτ (1 − ℓnf(m, γ))
 is the time measured in the lab frame 
 is the proper time 
 is the Lorentz factor that dilates this time

t
τ
γ

We checked that this is indeed the time part of a Lorentz transformation, by analyzing the geodesic equation 
and verifying that considering the effect on space as well, the Finsler distance is preserved.

Morais, IPL, Pfeifer, Alves Batista, Bezerra, PLB (2024)



You can consider that the proper time is the decay 
time of a particle at rest

τ
t

If you use the deformed Lorentz transformation between energy and momentum, that can also be found using 
a very simple Finsler technique

E = m
∂F
∂ ·x0

= mγ + ℓng(m, γ) γ =
E
m (1 + ℓnh(E, m))

Plugging these expressions into the previous formula, we find an expression that shows a deformation of the 
time dilation due to Planck scale corrections

t =
E
m

τ (1 + ℓnG(E, m)) Why is this relevant?



Consider ℓn = η(n)E−n
Pl

Amplifier

For , , E = 100 TeV m = 100 MeV EPl = 1028 eV

We find that ( E
m )

2 E
EPl

= 1 %

The most natural candidate to test this effect is 
UHECR

Pion π± (m = 140 
MeV)



In fact, to test this effect in an accelerator, we would need a  TeV muon collider and 
improvement in precision of measurements in 2 orders of magnitude

10+

IPL, Pfeifer, CQG (2023)

E3/m2EPl



A problematic issue of this analysis consists in the substitution of the Lorentz 
factor by an effective one that, at dominant order, is very similar to the strong one 
that was presented previously

γeff ≈
E
m (1 + η

E3

m2EPl )

The problem with this substitution everywhere is that there are some expressions that in SR can be written 
with , but that shouldn’t suffer such a strong modification in this scenarioγ

β =
p

mγ is the speed of the particle that should be . So, without amplification.β ≈
p
E (1 + η

p
EPl )

For example

Based on an entirely different intuition, a group based in L’Aquila arrived at similar formulas and has done 
some preliminary investigations on this possibility, presented on proceedings

P. Abreu et. al.[Pierre Auger Collaboration], PoS (ICRC) 2021, doi:10.22323/1.395.0340

Trimarelli [Pierre Auger], EPJ Web Conf., (2023)  doi:10.1051/epjconf/202328305003



Although it’s a preliminary investigation, it shows great results for this observable 

−10−1 < η(1) < 5.95 × 10−6Looks for the fluctuation in the number of muons to find

Planck scale sensitivity

Lesson I : All the effects that present an intrinsic boost (in time and energy) should be modified.

Lesson II : In the DSR scenario, threshold energies modifications are much smaller that the boost correction. 
Therefore, it’s not necessary to change limits of integration in energy. You can proceed to just change the boost.

Lesson III : Deformed trajectories are also not relevant because the massive particles that decay don’t travel 
long enough.



Alternative MDRs



Wagner, Varão, Lobo, 
Bezerra, PRD (2023)



QG phenomenology in the IR - cold atoms

• Recoil frequency of cold atoms involving Raman transitions

−6.0 < ξ1 < 2.4

109Atom momentum
Atomic mass

Source: Nature



Wagner, Varão, Lobo, Bezerra, PRD (2023)

In the non relativistic limit, we derived a modified Schrödinger equation

Metric

Laplacian minimally coupled 
with vector potential for 
electromagnetism and gravity

Scalar potentials of 
electromagnetism and gravity



If we use the Schwarzschild metric and approximate the gravitational field in the vicinity of the surface of 
the spherical massive object, we can derive a Hamiltonian of the kind 

 is the velocity of the earth relative to 
the rest frame of the CMB 
𝒜

𝒜 ∼ 10−3c

Ĥℓ =
̂k2

2MI(ξn)
+ Mgz

All the modifications are 
inserted into an effective 
inertial mass MI

This indicates a deformation of the expected acceleration a = < ··x >

Violation of the weak equivalence principle may be tightly 
constrained due to the high experimental precision Eötvös-like 
experiments can achieve nowadays 



QG phenomenology in the IR - equivalence principle

=
̂k2

2MI
+ Mggz

MI ≈ Mg [1 +
ℓMgc

2 (103ξ1 + ξ2 + 10−3ξ3)]
Considering free fall of two distinct massive bodies A and B, this violation of 
the weak equivalence principle can be summarized in the Eötvös 
parameter

Inertial mass  Gravitational mass≠

The MICROSCOPE Collaboration gives |η | < 10−14

|ξ1 | ≤ 𝒪(101)

|ξ2 | ≤ 𝒪(104)

|ξ3 | ≤ 𝒪(107)

Fabian Wagner, Gislaine Varão, IPL, Valdir. B. 
Bezerra, “Quantum-spacetime effects on nonrelativistic 
Schrödinger evolution”, PRD 108 (2023)



Conclusion



• I hope this little journey through the description of some 
observables and the discussion of some subtleties of deviations 
from Lorentz symmetry has been interesting for you.

• It would be impossible to address all the phenomenologically interesting effects, but I made a small 
selection of very popular areas and included some others that I think deserve further investigation.

• Again, I strongly recommend the reviews cited in the first lecture.

Robert Gilmore, “Alice in Quantumland”, Copernicus 
Books, 1995



Thank you! 
Obrigado!


