ULTRA FAST SEMICONDUCTOR RADIATION SENSORS FOR HIGH ENERGY PHYSICS AND BEYOND

State DE SA

M. Leite HEPIC-USP July 12 2021

UFSD PROJECT

The Objectives

- R&D in large area Ultra Fast Semiconductor Detectors (UFSD) with ps timing resolution for collider physics applications - Participation in the construction & commissioning of ATLAS Experiment HGTD Phase-II upgrade. Participate in R&D for ALICE3 TOF Timing Layers.
- Explore new UFSD designs (simulation/fabrication/tests) suitable for local application (e.g. synchrotron light experiments).
- Investigate & test new UFSD structures and materials targeting very high radiation dose applications.
 The Local Team

M. Leite M. Munhoz M. Bregant G. Saito M. Kuriyama R. Menegasso M. Donadelli N. Medina N. Added

J. Martino R. Mansano S. Santos A. Seabra N. Morimoto

M. Guazelli R. Baginski R. Buhler R. Giacomini M. Melo

M. Moralles

THE MAIN DRIVER : HL-LHC

HL-LHC latest update (01/2021)

THE MAIN DRIVER : HL-LHC

- So far, we explored only **5%** of expected LHC integrated proton-proton luminosity (4ab⁻¹)
- Most of the data will come from HL-LHC (a precision measurements era):
 - Studies of Higgs couplings
 - Studies of Higgs self-couplings (di-Higgs)
 - Probe the EWK sector though VBS and precision SM measurements $(sin^2 \Theta_w)$
 - On/Off-shell vector bosons double and triple differential cross -section measurements ...
 - Searches for dark matter (monojets) ... etc.
 - Needs extended tracker coverage to high rapidities
- Expect to deal with
 - instantaneous luminosity of **7.5x10³⁴ cm⁻²s⁻¹**
 - ~200average number of collisions per bunch crossing (<μ>)
- Increase <µ> and you also increase the track and vertex density

<µ> = 200

THE MAIN DRIVER : HL-LHC

- Good track-vertex association (σz₀) is crucial for pileup mitigation ...
- For the HL-LHC operation, ATLAS will replace its inner tracker, extending coverage from |η|
 <2.5 to |η| <4.0 (ITk)

M. Leite

• CMS will also replace its tracker systems for HL-LHC, extending the coverage to $|\eta| < 4.0$

2021-07-12

THE NEED FOR TIMING (I)

- ITk spatial resolution in forward region: few mm for low pT particles (bad!)
- Today, track reconstruction relies solely on the spatial (3D) information
- Collisions are distributed in time :
 - HL-LHC: I.8 col/mm (z), 175ps gaussian spread
 - if we can measure the timing well enough, we can resolve spatial ambiguities
 - ... for time-tracking association, this needs to be done with a resolution of 30ps or better

I/6 pileup

У

y

THE NEED FOR TIMING (II) : ATLAS HGTD

- ATLAS needs a new system covering $2.5 < |\eta| < 4.0$ that can associate timing to the ITk reconstructed tracks
 - segmentation of 1.3x1.3mm² (for ITk track matching and low occupancy)
 - Should not add significant amount of material in front of EMEC and FCAL
 - Should fit in a constrained space
 - Total thickness ~ 12cm
 - Total radius ~ 1.1m (active radius 0.12-0.64 m)
 - \circ 6 m² of Si, 3.5 M channels
 - Should be cope with a neutron fluence of ~ 2.5×10^{15} 1MeV n_{eq} cm⁻² and TID of ~ 2MGy
 - Needs very thin, very high timing resolution sensors (~30ps) \rightarrow LGAD
 - Will provide instantaneous luminosity measurement (per BCID)
 - CMS will also install a Timing Detector (MIPS) using different technologies for the Barrel (LYSO + SiPM) and EndCap (LGAD)

M. Leite

HEPIC - USP

Technical Design Repor

THE NEED FOR TIMING (III) : ALICE3 TIMING LAYERS

- ALICE3 will be a completely new compact semiconductor based detector (~ year 2030)
- Capable to operate at $L \sim 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- $|\eta| < 4.0$, full azimuthal coverage
- PID implemented by two timing layers (TOF)
 - Technologies under consideration (target : 20ps)
 - LGAD
 - SiPMs (or SPADs)
 - Monolithic
 - Sensor R&D ramping up now

	TOF @ 20 cm	TOF @ 1 m
Pixel pitch	1 mm	5-6 mm
Occupancy	2.7E-03	3.3E-03
Hit rate (kHz/cm ⁻²)	3.7E+03	1.5E+02
NIEL (1-MeV-n _{eq} /cm ²)	2.31E+12	9.24E+10
TID (rad)	7.39E+04	2.96E+03
Area (m²)	1.56	16.59
Material Budget (X/X ₀)	1-3%	
Power consumption		
Time resolution	< 50 ps	20 ps

M. Leite

ULTRA FAST SILICON DETECTORS

LGAD (LOW GAIN AVALANCHE DETECTORS)

2021-07-12

M. Leite

HEPIC - USP

LOW GAIN AVALANCHE DETECTOR (LGAD)

- Sensor requirements
 - timing resolution < 30ps 0
 - radiation hard 0
 - low noise 0
 - possibility of segmentation in arrays 0

- Low Gain Avalanche Detector (LGAD) •
 - Proposed by RD50 ~ 2014/2015 Ο
 - n-on-p silicon 0

50

h

300 µm

- highly doped p-layer under junction 0
- low gain, independent of thickness Ο
- 300μm, 50μm, 35μm or even 20μm 0
- 1.3x1.3mm² (ATLAS HGTD), 1x3 mm2 0 (CMS MIP Timing Detector)
- Several sensor batches by CNM (Spain), 0 BNL, Hamamatsu (Japan), FBK (Italy), IHEP, NDL (China) ...
- ATLAS HGTD will use 15x30 arrays (2 0 15x15 chip arrays bump bonded to FE electronics) sensor blocks

2021-07-12

M. Leite

10

LOW GAIN AVALANCHE DETECTOR (LGAD)

- Thin sensors → increased radiation hardness
- Intrinsic gain → increased signal/noise

LGAD: rise time proportional to Gain/thickness

ATLAS LGAD PROTOTYPES TESTS

LGAD ELECTRICAL PERFORMANCE

Manual probe station setup setup (USP)

2021-07-12

M. Leite

HEPIC - USP

LGAD SIGNAL PERFORMANCE (II)

- Setup running @ USP, board designed @USP
- Bias @100V
- Total "**Dark**" Current measured on the board @100V : 145nA
- 1st stage amplification noise : 290uV rms (@ 2 GHz BW scope)
- Test signal : 250mV step (900ps rise time) into 0.5 pF injector cap
- Test temperature = 22°C

RADIATION EFFECT ON DETECTOR PERFORMANCE

- Very harsh conditions at high luminosity and forward region
- Neutrons de-activates charge acceptors in the gain layer, TID increases the dark current
- Up to certain point, compensated by increasing the bias voltage
- Complex process, can be ameliorated with changes in geometry or addition of Carbon
- For the very forward region, replacement of the sensors during midle-life is the best approach to maintain the system performance throughout the HL-LHC lifetime

M. Leite

Produced charge

Timing resolution

SETUP FOR RADIATION TESTS @FEI (TID)

- X-Ray generator (high dose can get very close to the tube window)
- Sensor cooled to -20oC (liquid/air cooling)
- Sealed chambers N2 filled to avoid condensation
- Dynamic measurements during irradiation (IV, CV, Gain, Timing)
- Waiting for assembly... (*)

IRRADIATION FACILITIES IN SÃO PAULO

- On site Pelletron accelerator: protons (14 MeV) to Ag (110MeV)
- Allows testing the device while being irradiated

ladc 33ana

- On site 5 MW research reactor
- $\sim 10^{12} n_{eq}^{2}/\text{cm}^{2}\text{s}$ (up to 10^{13} near the core)

• On site 1 MCu industrial ⁶⁰Co irradiator

- Off site ⁶⁰Co source
- ~36 Gy/h collimated
- Device can be tested while irradiated

M. Leite

THE BEYOND :

LGADS FOR LOW ENERGY X-RAY DETECTION

- Giving the knowledge acquired in HEP by the group ...
- Giving the significant infrastructure available at the Universities ...
- *Giving that LGAD design is rather simple...*
- What level of design/fabrication/qualification can we achieve in :
 - simulation
 - masks
 - implantation
 - fabrication
 - assembly
 - *testing (including irradiation)*
 - readout system
- How can we better explore the unprecedented timing and radiation hard characteristics of LGADS for local low energy X-Ray detection (aiming for a full detector system)?

Towards a facility for semiconductor radiation detectors R&D

LGADS FOR X-RAY APPLICATIONS

- Low energy X-Rays detection
- Internal gain allows detection of X-Rays that deposit a charge that is too small for Si planar detectors (noise)

X-Ray absorption for several LGAD thicknesses

	2keV	5keV	7keV
50um	100%	94%	67%
100um	100%	100%	89%
300um	100%	100%	100%

Brilho das fontes de raios X do Sirius: IVU19: onduladores de raios X em vácuo, SCW60: wiggler de 4T e 2T: dipolos de 2 T. A posição das bordas K de absorção de elementos químicos importantes estão apresentadas no canto esquerdo superior da figura

²⁴¹Am - Aversham variable X-Ray source

2021-07-12

LGADS FOR X-RAY APPLICATIONS

- Geometry allows high segmentation in electrodes
- Segmentation in readout pads
- AC coupling through a continuous oxide layer above the multiplication layer

- Prototype of 8.4x8.4 mm2
- 14 strips (50µm width)
- 49 pixels (0.2x0.2 mm2, 0.5 mm gap) •

Fig. x: AC-LGAD Pulse height vs. x (left) and y (right) position, as measured by SCIPP's IR Laser (solid lines) and SSRL x-ray (dotted line).

HEPIC - USP

FINAL REMARKS

- 4D tracking presents the best strategy for pileup mitigation @ HL-LHC experiments
- Needs state-of-the-art, radiation-hard ultrafast (ps) semiconductor detectors
- The group activities are currently focused on sensor testing and qualification preparation for ATLAS, soon to start irradiation with neutrons at IPEN reactor.
- New LGAD concepts allows fine pixelation; a very interesting solution for for very high intensity, low energy X-Ray applications. This has already been discussed with the Sirius instrumentation group.
- Very new technology with many opportunities for contribution :
 - Timing (low resolution ...)

	HGTD
AILAS	ngid

- Costs (variation expected)
 - Sensors, installation and electronics : \approx US\$ 250k
 - Infrastructure for all local labs (HV, low T) : ≈US\$ 450k (and beyond ...)
 - Materials & services : \approx US\$ 250k
 - Manpower & Mobility : TBD ...

Strategic R&D

Strategic R&D Programme on Technologies for Future Experiments

CERN

December 2018

Experimental Physics Department

Dez. 2018

3.1 Silicon Detectors (WP1)

Most future experiments will rely on silicon technology for tracking and vertexing. To address the main challenges outlined above, four activities are foreseen.

 Development of hybrid pixel sensors with advanced features to be combined with high performance readout ASICs. These developments target small pixels, high-resolution timing and high-rate applications and comprise studies of various planar and LGAD sensor designs, as well as an ASIC development for very high speed and fine timing.

CERN

HGTD PARAMETERS

Pseudorapidity coverage	$2.4 < \eta < 4.0$
Thickness in z	75 mm (+50 mm moderator)
Position of active layers in z	3435 mm $< z <$ 3485 mm
Radial extension:	
Total	110 mm < R < 1000 mm
Active area	$120 \mathrm{mm} < R < 640 \mathrm{mm}$
Time resolution per track	30 ps
Number of hits per track:	
$2.4 < \eta < 3.1$	2
$3.1 < \eta < 4.0$	3
Pixel size	$1.3 imes 1.3 \text{ mm}^2$
Number of channels	3.54M
Active area	6.3 m ²

Table 2.1: Main parameters of the HGTD.

ATLAS HIGH GRANULARITY TIMING DETECTOR - HGTD

- Silicon based sensors of 1.3x1.3mm2 in active area
- Grouped in a matrix of 30x15 sensors (40x20mm2)
- 2 double layered disks (6m² silicon)
- sensors variable overlap (larger in the internal region)
- Separate in 3 rings that can be replaced to preserve the performance after irradiation
- Coolled to -30 C

2021-07-12

M. Leite

PHYSICS IMPACT OF HGTD

(I)

- Vector Boson Fusion (VBF)
 - VBF: 2 forward jets, bosons reconstructed in the central region
 - $\circ \quad H \to WW^*$
- HL-LHC enters the era of precision measurements in the Higgs sector

• Yukawa coupling top - Higgs

- \circ tH \rightarrow bbar
- Signature: 1 lepton and 4 ou 5 jets (2 b-tagged)
- One of the jets $|\eta| > 2.4$

(III)

- Weak mixing angle (sin²θ) meas.
 - asymmetry in angular distribution of l⁺ and l⁻ from Z decay (forward/backward assymetry)
 - leptons are classified in CC, CF, FF (C→ central → $|\eta|$ <2.4, F →2.5< $|\eta|$ < 4.2)
 - $\circ~$ the 2 most precise measurements differs 3 $\sigma~$

 $\cos \theta_{\text{CS}}^* = \frac{p_{z,\ell\ell}}{|p_{z,\ell\ell}|} \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{m_{\ell\ell} \sqrt{m_{\ell\ell}^2 + p_{T,\ell\ell}^2}}$ $\cos \theta_{CS}^* \ge 0 \to \text{Forward}$ $\cos \theta_{CS}^* < 0 \to \text{Backward}$

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}},$$

$$A_{\rm FB} = \frac{N_{\cos\theta_{\rm CS}^* \ge 0} - N_{\cos\theta_{\rm CS}^* < 0}}{N_{\cos\theta_{\rm CS}^* \ge 0} + N_{\cos\theta_{\rm CS}^* < 0}}.$$

2021-07-12

M. Leite

HEPIC - USP

HGTD IMPACT ON PERFORMANCE OBJECTS

M. Leite

HEPIC - USP

LOW GAIN AVALANCHE DETECTOR (LGAD)

FRONT END ELECTRONICS

2021-07-12

M. Leite

HEPIC - USP

SENSOR SIMULATION

[m] A 180

WeghtField2

http://personalpages.to.infn.it/~cartigli/Weightfield2/Main.html

- Allow for sensor response evaluation
- Geometry
- Bias Voltage
- Diferent topping profiles
- Can simulate passage of charged particles
- Response of electronics
- Radiation effects

2021-07-12

M. Leite

HEPIC-USP

SIMULATION AND DESIGN

Investigate new UFSD structures and materials targeting very high radiation dose applications

- Simulation
- Rad Hard design (geometry, doping material...)
- Understand the radiation damage process
- Mask project (LGAD, AC-LGADs, etc.)
- Implantation
- Thinning, slicing
- Bonding
- Testing
- what else?

M. Leite

LGAD SIGNAL PERFORMANCE (I)

- 4 channel board developed @ USP, LGAD wire bonded directly
- Guard ring grounded
- 1st stage amplification based on 80GHz RF transistor
- Added a 2nd stage fast voltage op-amp (8GHz GBW) module on board (may be replaced by other op amp or by-passed)
- 4 electronic injection channels
- Cooling pad for cold finger attachment and temperature monitoring

Area for cold finger contact

 I2C temp sensor (SI7051, ±0.1°C)

Sensor glued on the thermal pad and wire bonded

Back with openings for radiation passing

LGAD SIGNAL PERFORMANCE (II)

- Bias @100V
- Total "**Dark**" Current measured on the board @100V : 145nA
- 1st stage amplification noise : 290uV rms (@ 2 GHz BW scope)
- Test signal : 250mV step (900ps rise time) into 0.5 pF injector cap
- Test temperature = 22°C

90 Sr (β)1st stage amplifier response

LGAD SIGNAL PERFORMANCE (III)

- Collected charge (⁹⁰Sr) vs bias (HPK 3.2)
- Minimum of 4fC for electronics...

• Jitter (⁹⁰Sr) vs bias (HPK 3.2)

Collected Charge [fC]

M. Leite

LGAD SIGNAL PERFORMANCE

Timing coincidence using 2 sensors

- Electrons from 90Sr source
- Triggered by second detector layer
- Store scope waveforms and measure timing using a "software" CFD (frac. 0.6)
- Timing resolution
 ~150ps/[sensor,elec.] @ 100V
 (highly NOT optimized...)

Shielded box assembly

2021-07-12

M. Leite

HEPIC-USP

SENSOR TESTS AT USP

²⁴⁴Cm Source (in air)

	Linerey	riobability
	$\rm keV$	\times 100
$\alpha_{0,9}$	4882.12 (8)	0.0000047 (11)
$\alpha_{0,8}$	4919.24(7)	0.000050(5)
$\alpha_{0,7}$	4958.20(9)	0.000149(16)
$\alpha_{0,6}$	5166.58(7)	0.0000042(30)
$\alpha_{0,5}$	5217.24(7)	0.000055(9)
$\alpha_{0,4}$	5315.3	0.00004
$\alpha_{0,3}$	5515.29(6)	0.00352(18)
$\alpha_{0,2}$	5665.41(5)	0.0204(15)
$\alpha_{0,1}$	5762.65(5)	23.3(4)
$\alpha_{0,0}$	5804.77 (5)	76.7(4)

RADIATION TESTS (TID)

- Dedicated controller (temperature, cooler circulation, shutter, switch slow control and voltage monitor
- Same system to be used on charged particle (proton, ion) tests

THE LGAD VARIANTS

• Very new technology with many opportunities for contribution :

N. Cartiglia - 2021