Leitura Multi-Anodal

P. Gaspar, J. M. Seixas 12.07.2021

Usando um Fotomultiplicadora Multi-Anodo e Aprendizagem Profunda para Tornar Mais Fina a Granularidade do Calorímetro Hadrônico TileCal do ATLAS

Projeto: Física Experimental de Altas Energias e Tecnologias Associadas

- Projeto em andamento em conjunto com o TileCal (LPS COPPE/Poli/UFRJ & CERN).
- Combinação de processamento de sinais e aprendizado de máquina em experimentos de HEP.
- Spin-offs:
 - Possibilidade de aplicação da tecnologia em outros detectores, atuais e novos.
 - (TB, Covid-19).

Metodologia similar pode ser aplicada em outras frentes; algumas aplicações já estão sendo feitas em medicina

COPPE/Poli/UFRJ Laboratório de Processamento de Sinais nteligência Computacional. Inovação

- Tornar mais fina a granularidade do TileCal através do uso de uma fotomultiplicadora de leitura Multi Anodal (MA-PMT).
- Associar as imagens formadas na grid de pixels da MA-PMT à regiões específicas dentro das células do calorímetro.
- Tornar a granularidade atual das camadas A e BC duas vezes mais fina, sem modificar a estrutura mecânica do TileCal.

Módulos do TileCal

O sinal temporal coletado pela PMT de anodo único, permite separar os dados, das células A e BC, em duas novas sub-regiões.

Essa separação permite criarmos um conjunto de dados anotados e assim olhar para o problema sobre a perspectiva do **aprendizado** supervisionado.

Motivação

- Boosted Jets no ambiente de alta luminosidade do LHC (HL-LHC).
- Quarks produzidos com um *boost* em seu momento.
- Seus produtos de decaimento possuem momento na mesma direção.

- Ângulo de separação entre dois quarks.
- Cada vez menor com o aumento de energia.

Introdução

- Cada célula do calorímetro é lida por um grupo de fibras responsáveis por transportar o sinal luminoso até o tubo fotomultiplicador localizado no final do módulo.
- Na configuração atual, cada célula é lida por dois tubos fotomultiplicadores.
- Para o a nova cadeia de leitura, substituímos uma das fotomultiplicadoras de anodo único por uma MA-PMT

MA-PMT

Agrupamento de Fibras

Módulo do TileCal

No novo arranjo experimental, o mesmo sinal é lido por dois tubos fotomultiplicadores com características diferentes.

Conjunto de Dados

- Durante o processo de calibração, uma fonte radioativa de Cs137 passa por todos os módulos a fim de checar a qualidade e uniformidade da resposta de cada uma das telhas do calorímetro.
- Usamos o sinal temporal coletado pela PMT de anodo único, juntamente com o conhecimento da geometria do detector, para criar o conjunto de dados de treinamento.

• Exemplo:

 Usar o perfil de sinal temporal para separar a célula A12 em duas novas sub-células (esquerda e direita).

Cesium Scan Path in A12 Cell

- A célula A12 possui 9 telhas em cada um dos seus 3 tubos.
- O scan com a fonte de Cs funciona como um raio-x de cada célula.
- Durante a passagem da fonte radioativa, em um dos tubos, vemos 9 picos no seu sinal temporal.

tubos. e

- Usando o sinal coletado pela PMT de anodo único podemos dividir as células A em duas novas regiões: esquerda e direita.
- Com um método similar as células BC são divididas em células B e C, separadamente. Desta vez usando informações dos tubos presentes em cada uma destas células.
- Essa nova separação permite criar um banco de dados anotado e tratar o problema sob a perspectiva do aprendizado supervisionado.

7

- Usando o sinal coletado pela PMT de anodo único podemos dividir as células A em duas novas regiões: esquerda e direita.
- Com um método similar as células BC são divididas em células presentes em cada uma destas células.
- Essa nova separação permite criar um banco de dados anotado e tratar o problema sob a perspectiva do **aprendizado** supervisionado.

Sinal coletado pela PMT

Não descartamos os sinais de baixa amplitude

A2 Cs Run Numbers	Amostras
10726F	520
10727B	524
10728F	524
10729B	528
10730F	524
10731B	524
10732F	524
10733B	524
10734F	522
10735B	522
10736F	520
10737B	520
10741F	516
10742B	518
10743F	520
10744B	514

de pixels da MA-PMT pode resolver o problema da baixa estatística coletada durante o processo de calibração.

Modelos Generativos

- Usar um model generativo para aumentar o número de amostras no conjunto de dados.
- Generative Adversarial Networks (GAN) são redes baseadas em teoria dos jogos.
- Dois modelos (*Deep Neural Networks*) competem entre si.
- **Gerador:** Cria imagens sintéticas que se parecem com as imagens reais.
- **Discriminador:** Avalia se as images são reais ou sintéticas.

MinMax Game

$J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim p_{data}} \log D(x) - \frac{1}{2} \mathbb{E}_z \log(1 - D(G(z)))$ $J^{(G)} = -J^{(D)}$

R: Dados Reais

G: Dados Sintéticos

Proposta de Validação Cruzada

- 16 corridas para a célula A2.

Pipeline de Dados

- Propomos três *pipelines* diferentes.
- **Synthetic:** Treinar a CNN com dados sintéticos.
- Altogether: Treinar a CNN com uma combinação de dados reais e sintéticos.
- Fine Tuning: Carregar a CNN treinada com dados sintéticos, e começar um processo de ajuste fino do modelo usando os dados reais.

Resultados

14

Imagens - Célula A2

	.AS P	relimin	ary		Lei	ft Subo	ell –	250	ensitv
_ Tile	Calori	meter	201.85		Re	al Imaç	jes _	 240	an Inte
 	217.77	217.23	203.80	236.58	200.99	194.96	 	230	Me
_ 235.07 _	203.27	221.60	197.36	220.11	225.71	210.36		 220	
 174.99 	197.99	200.41	196.65	255.00	193.13	199.16	199.34	010	
202.60	219.62	218.31	215.65	221.61	219.27	202.04	212.66 _ 	210	
 	228.70	195.97	220.41	201.58	180.86	226.39	201.20	 200	
	188.58	213.09	209.62	190.78	209.14	195.66		 190	
			184.83	227.43				 180	

[x pixels]

Mean Intensity

[x pixels]

[x pixels]

[x pixels]

[x pixels]

[y pixels]

- Exemplo de imagens reais e sintéticas geradas para a célula A2.
- As imagens mostram a média de intensidade de pixels para cada conjunto de dados.
- Diferença relativa entre entre as imagens reais e sintéticas possui 3% como o maior valor.

Imagens - Célula A2

<u></u>
Ð
×
ā
~

ATL	.AS P	relimin	ary		Rea	l Image			0.1
_ Tile	Calori	meter	0.12	0.12	(Left	(Right) -	1 _		0.08
	0.12	0.12	0.12	0.12	0.12	0.12		_	0.06
0.12 	0.12	0.11	0.12	0.12	0.12	0.12		_	0.04
_ _0.12 _	0.11	0.07	0.10	0.12	0.12	0.12	0.12 _ 		0.02
0.12 	0.10	0.06	0.10	0.11	0.12	0.12	0.12	-	0
	0.11	0.05	0.01	0.03	0.10	0.12	0.12	_	-0.02
	0.11	0.04	-0.03	-0.05	0.09	0.12			-0.04
 			0.10	0.10					-0.06

AT	L AS P	relimin	ary		Synth	etic Ima	ages
Tile	Calori	meter	0.06	0.06	(Left/	'Right) -	1
	0.07	0.07	0.07	0.07	0.06	0.05	
0.08	0.06	0.06	0.07	0.07	0.07	0.06	
0.06	0.07	0.03	0.07	0.07	0.06	0.06	0.08
0.07	0.05	0.01	0.05	0.06	0.07	0.06	0.08
	0.06	-0.01	-0.05	-0.02	0.04	0.07	0.08
	0.07	-0.01	-0.07	-0.08	0.04	0.07	
_ _ _ _ _			0.05	0.06			

[x pixels]

Imagens sintéticas foram capazes de capturar o padrão que difere cada uma das classes.

[x pixels]

[y pixels]

- Aqui mostramos a diferença no padrão discriminatório que representa cada uma das classes (sub-células).
- Para a camada (granularidade transversal) as classes são para as sub-células direita e esquerda.
- Na primeira figura vemos a diferença nesse padrão para as imagens reais (coletadas durante a calibração de Cs).
- A segunda figura mostra o mesmo padrão, desta vez para as imagens sintéticas geradas pelo model generativo.
- Claramente podemos ver que as imagens sintéticas acompanham o mesmo padrão discriminatório das imagens reais.

Classificação - Célula A2

- As figuras acima mostram a curva ROC para diferentes pipelines de treinamento.
- O pipelines de treinamento possuem um impacto claro na estimativa de incerteza da classificação.
- O pipeline de Fine Tuning apresentou o melhor resultado entre os três pipelines propostos.

Altogether

Fine Tunning

Classificação - Célula A2

Resultados na classificação da célula A2 mostram eficiência maxima em todos os bins, com exceção de alguns bins de alta amplitude.

Imagens - Célula BC1

[y pixels]

[x pixels]

[y pixels]

[x pixels]

[y niyele]

[x pixels]

[v nivels]

[y pixels]

	AS F	relimir	ary		С	Subcel		240	nsity
Tile	Calori	meter	182.30	177.22	Syntl	netic In	nages	240	n Inte
	200.57	201.18	189.81	218.97	196.48	187.58	-	230	Mea
_ 	190.28	203.87	190.13	219.77	221.59	203.67		 220	
 168.15	185.11	191.28	198.71	247.64	197.72	193.68	190.21	210	
189.03	201.76	208.22	214.95	214.05	205.42	192.44	200.17	 200	
 	211.72	188.38	214.48	194.35	175.32	209.35	190.44	 190	
	187.12	204.87	210.94	185.35	197.61	185.10		 180	
			186.74	212.52				 170	
						[×	oixels]		

- Exemplos de imagens sintéticas geradas para a célula BC1.
- As imagens mostram a intensidade dia de pixels.
- Temos uma diferença relativa maxima de 6% em alguns pixels.

Imagens - Célula BC1

	.AS P	relimin	nary		Rea	I Image			0.08
_ Tile	Calori	meter	-0.00	-0.00	(B/C)) - 1			0.00
	-0.00	-0.00	-0.01	-0.01	-0.03	-0.01			0.06
-0.00	-0.00	-0.01	-0.02	-0.07	-0.06	-0.04			0.04
-0.00	-0.00	-0.02	-0.06	-0.06	-0.05	0.01	0.01		0.02
-0.00	0.00	-0.02	-0.05	-0.01	0.07	0.07	0.02	_	0
-	0.01	0.01	-0.01	0.03	0.08	0.07	0.01	-	-0.02
- - -	-0.04	-0.04	-0.06	0.04	0.08	0.05			-0.04
-			-0.02	0.04					-0.06

[X	pixels]

ATL	.AS P	relimin	ary		Synth	etic Ima	nges
_ Tile	Calori	meter	0.01	0.01	(B/C)	i - 1	
	0.01	0.00	0.00	-0.00	-0.03	-0.00	
_0.00	0.01	0.01	-0.02	-0.06	-0.05	-0.02	
0.01	0.01	-0.01	-0.06	-0.05	-0.05	0.03	0.01
0.01	0.02	-0.01	-0.05	0.00	0.08	0.09	0.03
	0.04	0.03	0.00	0.05	0.10	0.09	0.02
	-0.01	-0.02	-0.05	0.06	0.09	0.07	
			-0.02	0.05			

[x pixels]

Imagens sintéticas foram capazes de capturar o padrão que difere cada uma das classes.

[y pixels]

Classificação - Célula BC1

Synthetic

 Assim como na classificação da célula A2, o pipeline pipelines propostos.

Altogether

Assim como na classificação da célula A2, o pipeline de Fine Tuning apresentou o melhor resultado entre os três

Fine Tunning

Classificação - Célula BC1

- Resultados na classificação da célula BC1 mostram eficiência maxima em todos os bins, com exceção de um único bin de baixa amplitude.
- A eficiência para a célula BC valida o processo de analise pois recupera a informação de células B e C separadas, assim como no projeto original do calorímetro.

Sumário - Resultados da Classificação

Resultados no Conjunto de Teste							
	Célula A2	Célula BC1					
ACC	89.4 +- 3.3	97.1 +- 1.0					
AUC	99.1 +- 0.3	99.9 +- 0.0					
PD (Left/B)	98.3 +- 0.6	98.3 +- 0.9					
FA (Left/B)	4.9 +- 1.1	1.4 +- 0.4					
PD (Right/C)	95.1 +- 1.1	98.5 +- 0.4					
FA (Right/C)	1.7 +- 0.6	1.7 +- 0.9					

- Aqui mostramos as medidas de performance calculadas nas partições de teste (dados reais coletados durante a calibração de Cs).
- Granularidade longitudinal (células BC) possui resultados um pouco melhores que a granularidade transversal (células A).
- Isso acontece devido à separação natural das células BC em duas sub-células B e C separadamente.
- Medidas de Performance:
 - ACC Acurácia
 - AUC Área sob a curva ROC
 - PD Probabilidade de detecção
 - FA Falso Alarme

Sumário

- baseando-se no padrão de imagem coletado na grid de pixels da MA-PMT.
- desses pipelines na incerteza de classificação.

Planos Futuros

- Mover a análise para dados coletados com o *test beam*.
- Analisar o impacto das imagens sintéticas na reconstrução de energia.
- Possibilidade de usar uma SiPMT no lugar da MA-PMT.

Usar uma combinação de modelos generativos e de classificação possibilitou separar células do TileCal em novas sub-células

Treinar modelos de CNN com uma combinação de diferentes pipelines de dados reais e sintéticos permitiu avaliar o impacto

Obrigado

25