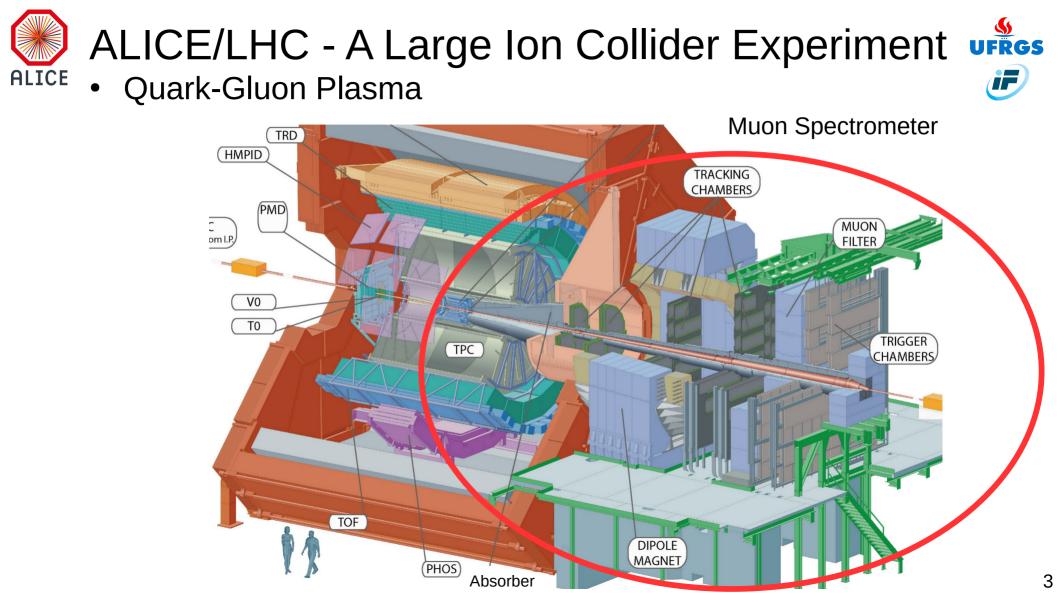


Computing systems for ALICE/LHC: run3 and beyond

Beatriz Gay, Luis Gustavo Pereira,

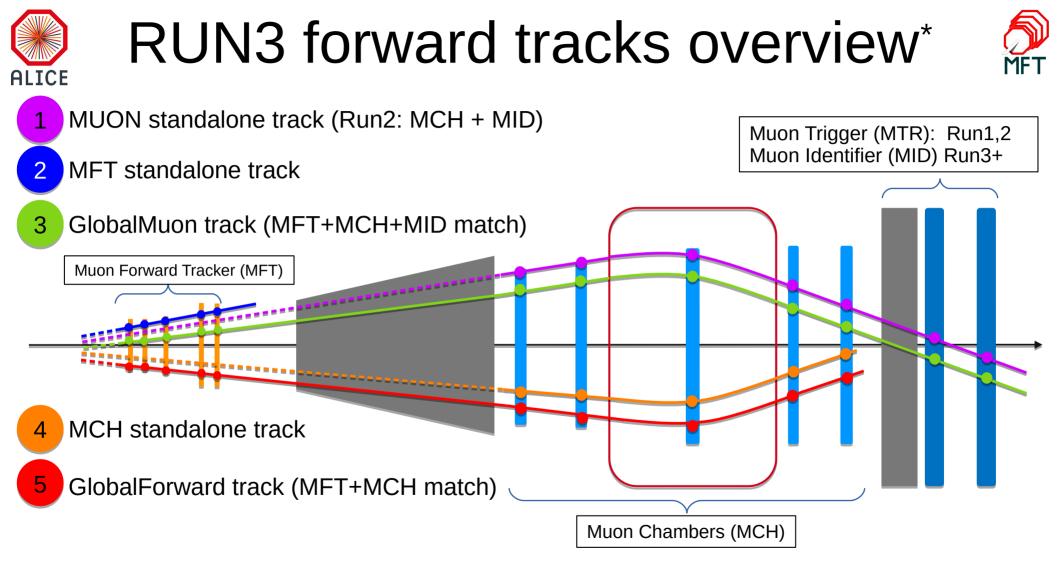
Rafael Peretti Pezzi

GEFAE IF/UFRGS


Workshop RENAFAE 2021 13th July 2021

Outline

- Forward tracking in ALICE
 - Muon Spectrometer
 - Muon Forward Tracker
 - Run5 and beyond
- ALICE O2: ALICE On-line Off-line computing system
 - Forward tracking data model, tracking classes



Muon Forward Tracker

- Forward pseudorapidity: -3.6 < eta < -2.45
- 5 disks / 10 active layers
- 936 ALICE Pixel Detectors (ALPIDE)
 - MAPS: Monolithic Active Pixel Sensors
- Improve vertexing resolution at forward
 - B mesons studies
 - prompt/non-prompt dimuon separation

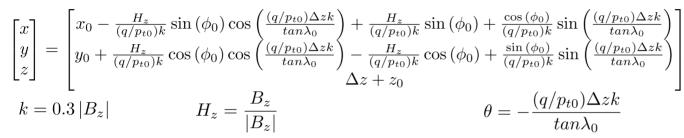
ALICE Collaboration, Technical Design Report for the Muon Forward Tracker http://cds.cern.ch/record/1981898

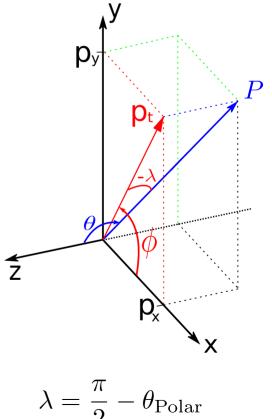
Run3 ALICE data taking objectives

- For Pb-Pb collisions:
 - Reach the target of ± 13 nb⁻¹ integrated luminosity in Pb-Pb for rare triggers.
 - The resulting data throughput from the detector has been estimated to be greater than 1TB/s for Pb–Pb events, roughly two orders of magnitude more than in Run 1

Predrag Buncic, Analysis in Run 3 (Offiline Week 08/11/2017) https://indico.cern.ch/event/675166/

Challenges in forward tracking: new computing model at forward


- High multiplicity
 - Demand high efficiency tracking/reconstruction
 - New track model and dataformats at foward
- Matching MCH and MFT tracks
 - Separated by ~4 meters of graphite+concrete
- Performance studies for a new dedicated Heavy Ion Experiment at the LHC \rightarrow ALICE 3 LOI


Forward track model and Coordinate System

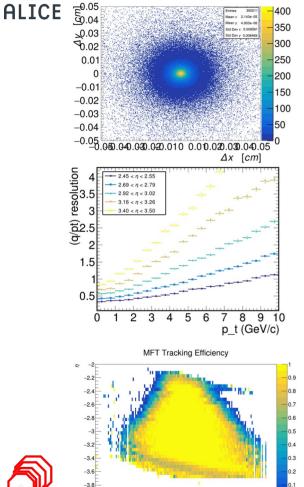
MFT

• Helix track model

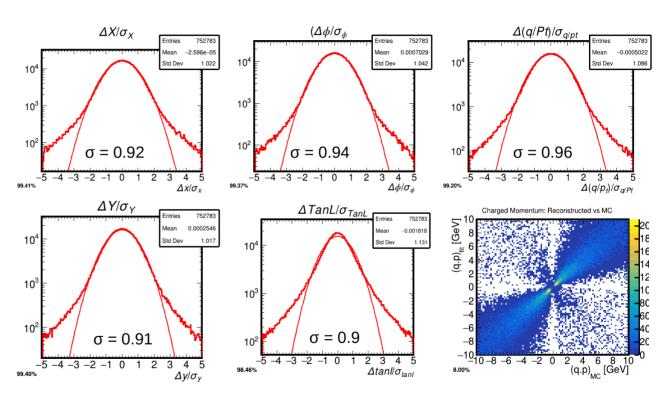
- State vector / coordinate system: $\vec{s} = (x, y, \phi, \tan \lambda, q/p_t)$
 - ϕ → p_t direction (azimuth)
 - $\lambda \rightarrow$ Complementary polar angle:

O2 implementation of forward tracks

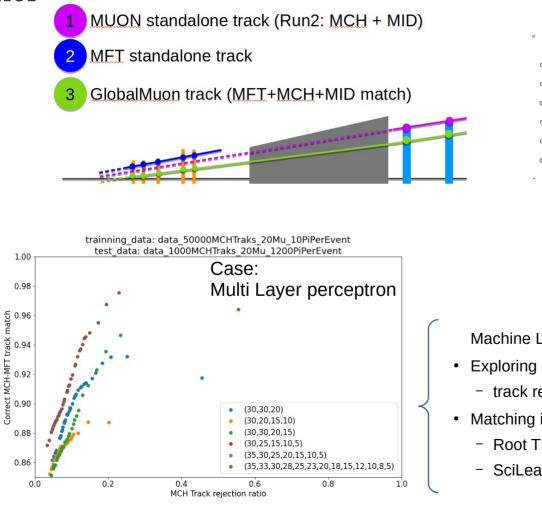
- TrackParCovFwd Class
 - Data members: parameters & covariances matrix
 - Methods
 - Track propagation (analytic)
 - Multi coulomb scattering effects
 - Kalman filter update
- Used by MFT standalone tracks and GlobalMuonTracks
 - Global Muon Tracks in separate repository


Kalman filter:						
$p_k:'$						
$egin{array}{c} x_k \ y_k \ \phi_k \ \end{array}$	'm_k:'	'V_k:'	'H_k:'	'h_k:'		
$\left[egin{array}{c} tan\lambda_k \ (q/p_{tk}) \end{array} ight]$	$\begin{bmatrix} x_m \\ y_m \end{bmatrix}$	$\begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$	$egin{bmatrix} x_m & 0 & 0 & 0 & 0 \ 0 & y_m & 0 & 0 & 0 \end{bmatrix}$		

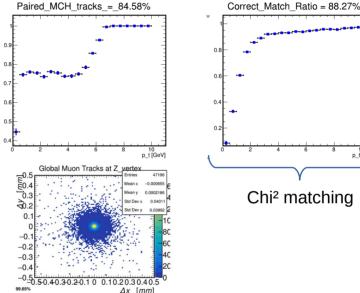
'K_k = CP*H_k.T*(V_k+H_k*CP*H_k.T).inv(): '

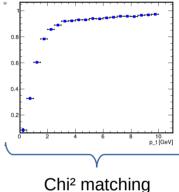

$\boxed{\frac{cp_{00}\left(\sigma_{y}^{2}+cp_{11}\right)}{-cp_{10}^{2}+\left(\sigma_{x}^{2}+cp_{00}\right)\left(\sigma_{y}^{2}+cp_{11}\right)}}$	$\frac{cp_{10}^2}{-cp_{10}^2 + \left(\sigma_x^2 + cp_{00}\right)\left(\sigma_y^2 + cp_{11}\right)}$	$-\frac{cp_{00}cp_{10}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{cp_{10}(\sigma_x^2 + cp_{00})}{-cp_{10}^2 + (\sigma_x^2 + cp_{00})(\sigma_y^2 + cp_{11})} \bigg]$
$-\frac{cp_{10}cp_{11}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{cp_{10} \left(\sigma_y^2 + cp_{11}\right)}{-cp_{10}^2 + \left(\sigma_x^2 + cp_{00}\right) \left(\sigma_y^2 + cp_{11}\right)}$	$-\frac{cp_{10}^2}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{c p_{11} \left(\sigma_x^2 + c p_{00}\right)}{-c p_{10}^2 + \left(\sigma_x^2 + c p_{00}\right) \left(\sigma_y^2 + c p_{11}\right)}$
$-\frac{cp_{10}cp_{21}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{cp_{20}(\sigma_y^2 + cp_{11})}{-cp_{10}^2 + (\sigma_x^2 + cp_{00})(\sigma_y^2 + cp_{11})}$	$-\frac{cp_{10}cp_{20}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{cp_{21}(\sigma_x^2 + cp_{00})}{-cp_{10}^2 + (\sigma_x^2 + cp_{00})(\sigma_y^2 + cp_{11})}$
$-\frac{cp_{10}cp_{31}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{cp_{30}(\sigma_y^2 + cp_{11})}{-cp_{10}^2 + (\sigma_x^2 + cp_{00})(\sigma_y^2 + cp_{11})}$	$-\frac{cp_{10}cp_{30}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{cp_{31}(\sigma_x^2 + cp_{00})}{-cp_{10}^2 + (\sigma_x^2 + cp_{00})(\sigma_y^2 + cp_{11})}$
$\left[-\frac{cp_{10}cp_{41}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}\right.$	$+ \frac{cp_{40}(\sigma_y^2 + cp_{11})}{-cp_{10}^2 + (\sigma_x^2 + cp_{00})(\sigma_y^2 + cp_{11})}$	$-\frac{cp_{10}cp_{40}}{-cp_{10}^2+\left(\sigma_x^2+cp_{00}\right)\left(\sigma_y^2+cp_{11}\right)}$	$+ \frac{cp_{41}(\sigma_x^2 + cp_{00})}{-cp_{10}^2 + (\sigma_x^2 + cp_{00})(\sigma_y^2 + cp_{11})} \end{bmatrix}$

MFT tracking performance evaluation (WIP)

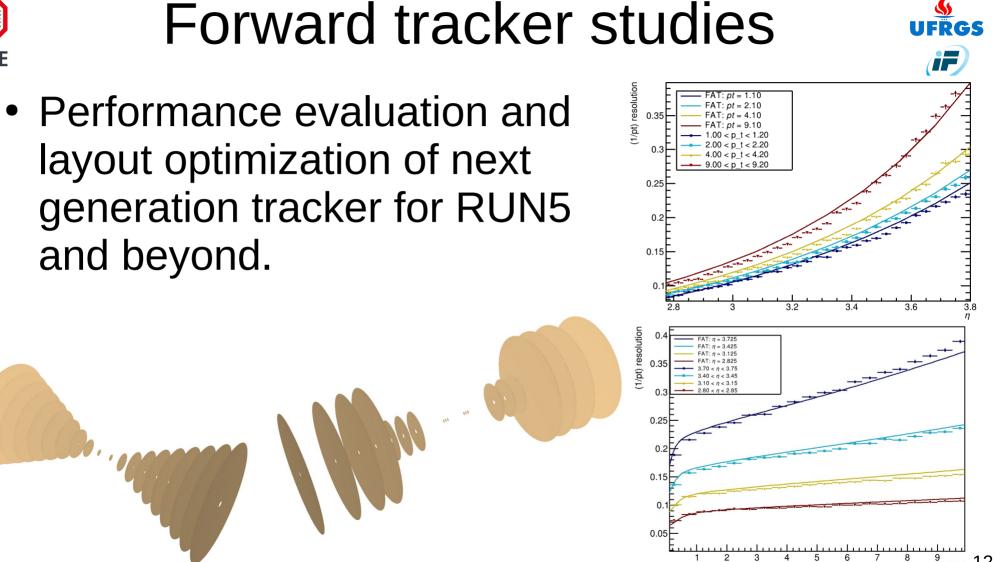

10 15 20 Vertex Z position [cm]

-15 -10





ALICE



Machine Learning:

- Exploring novel applications of machine learning
 - track reconstruction and physics analysis
- Matching interface with ML Libraries
 - Root TMVA
 - SciLearn Kit

⁹ p_t (GeV/c) 12

Summary

- ALICE/LHC demands a new computing system for run3 and beyond
- GEFAE is exploring the limits of forward tracking by addressing several forward-related computing challenges for ALICE
 - Track model, reconstruction, track matching, machine learning
 - ALICE 3 LOI

Backup slides

Physics interest for each topology of forward tracks (run3+)

- MUON standalone tracks (MCH+MID) \rightarrow Any muon-based analysis in the "Run1+2" style.
- MFT standalone tracks (MFT only: any charged particle) → Multiplicity analyses, underlying event characterization at forward rapidity, UPC, ...
- ³ Global Muon Tracks (MFT+MCH+MID) → Any muon-based analysis in the "Run3+4" style.
- Particular case 1: MCH tracks without MID identification and without MFT information. Possible use: analyses targeting very soft muons, e.g. dimuon observables at vanishing pT in ultra-peripheral collisions.
- Particular case2: MCH+MFT tracks without MID identification. Possible use: as before, but with improved mass resolution for low-mass resonances and a better correction for the absorber effects.