Invitation to the BCLC Workshop 21-22/7/2021

Carsten Hensel for the Organizing Committee

What's BCLC?

Brazilian Center for Linear Collider Studies

Isn't the Linear Collider Something far in the future?

ILC Status as of 2019 KEK report

Recommendations on ILC Project Implementation

High Energy Accelerator Research Organization (KEK)

- · ILC is a next-generation experimental facility to explore fundamental laws of the universe.
- · importance of e+e- collider has been long recognized
- global design team, GDE, was set up under ICFA for design and coordination of R&D in 2005
- · KEK proposed in 2012 that Japan should host ILC which was welcomed by HEP community
- · ILC Technical Design Report was completed in 2013
- ICFA then established Linear Collider Collaboration, LCC, and the Linear Collider Board, LCB,
 - · LCC combines ILC and CLIC
- 2020: ICFA reconfirms the international consensus for a Higgs factory and wishes to see the timely construction of the ILC in Japan.

What is the plan for the ILC?

Technical Aspects according to 2013 TDR

- · 2x11 km linear accelerators
- √s ~ 250-500 GeV
- · long. polarized beams (30/80)
- instead of two IP, two detectors in push-pull configuration
 - · SiD: compact detector
 - · SLD: larger detector
- · check out TDR for more details

How can I contribute?

Joining Studies For Next-gen e-e- Collider

ILC allows for various levels of contributions

- · study physics analyses of e+e- reactions
 - · probably the easiest way to contribute
 - · requires membership to have access to existing MC
- · study reconstruction of particle signals in e+e- environment (detector design)
 - · requires a much closer connection to existing groups
- study of state of the art detector components & new technologies for high precision measurements
 - · This one might be pricey depending on the situation at your home institutes.

Examples For Open Topics see ILC Study: Questions for Snowmass 2021

- Are LO parton-level generators sufficient for high-precision jet measurements?
- · How can eve- -> Zh be separated from eve- -> ZZ ?
- · What precision can be reached when measuring the ttbar threshold?
- · Which options are left for new eve- -> ff s-channel resonances?
- · Can we improve the W mass measurement precision at 250 GeV?
- · Study the Giga-Z (200 x LEP) case.

• ...

· Quite a few topics available.

· Coordinate with the corresponding groups!

DESY 20-112, KEK Preprint 2020-8, IFIC/20-34, LCTP-20-14 SLAC-PUB-17543

ILC Study Questions for Snowmass 2021

LCC Physics Working Group

Keisuke Fujii¹, Christophe Grojean^{2,3}, Michael E. Peskin⁴
(Conveners); Tim Barklow⁴, Yuanning Gao⁵, Shinya Kanemura⁶,
Jenny List², Mihoko Nojiri^{1,7}, Maxim Perelstein⁸, Roman Pöschl⁹
Jürgen Reuter², Frank Simon¹⁰, Tomohiko Tanabe¹,
James D. Wells¹¹ (Physics WG); Mikael Berggren²,
Esteban Fullana¹², Juan Fuster¹², Frank Gaede², Stefania Gori¹³
Daniel Jeans¹, Adrián Irles⁹, Sunghoon Jung¹⁴, Shin-Ichi Kawada²
Shigeki Matsumoto⁷, Chris Potter¹⁵, Jan Strube^{15,16}
Taikan Suehara¹⁷, Jupping Tian¹⁸, Marcel Vos¹²,
Graham Wilson¹⁹, Hitoshi Yamamoto²⁰, Ryo Yonamine²⁰,
Aleksander Flip Žarnecki²¹ (Contributors);

BSTRACT

To aid contributions to the Snowmass 2021 US Community Study on physics at the International Linear Collider and other proposed e^+e^- colliders, we present a list of study questions that could be the basis of useful Snowmass projects. We accompany this with links to references and resources on e^+e^- physics, and a description of a new software framework that we are preparing for e^+e^- studies at Snowmass.

Why BCLC?

What's next?

This is for everyone already contributing or thinking about contributing!

- · The ILC efforts make it easy to contribute as a single person.
- · But maybe we should consider to contribute as a group?
 - Brazilian LC group
 - · (South American LC group)
- · Sharing and organizing resources might be the most efficient way to contribute recognizably and make an impact.
 - · This is especially true for everyone working on other projects as well.

Proposal: BCLC

Brazilian Center for Linear Collider Studies

- · virtual community to foster, support and coordinate LC studies in Brazil
 - · not attached to any institute
 - · bring theory and experiment together
 - · (Seed efforts for a Similar group within South America)
- · represent LC efforts in Brazil and speak with one voice
- · keep track of expertise
- · share resources and reduce overhead
- · organize events
 - · Seminar's cinvited speaker's from abroads

 - lecturesworkshops

BCLC Workshop 21-22/7/2021 BCLC Kick-off Event

- · 2 day online workshop with the goal to establish BCLC
- · day I Lowering the threshold How to get involved?
 - · ILCSoft tutorial
 - · discussion on technical aspects
- · day 2 ILC Status and Plans
 - ILC WG3 Physics & Detector Spokespersons will be opening session
 - · presentations from South American contributors

Hope to see you talk to you next week!

Additional Information

Joining Sid and ILD what does it cost?

- Money is always and everywhere an issue.
 Especially true when colleagues have to fear that ILC contributions might siphon off resources.
- Both SiD and ILD offer lightweight guest membership.
- · guest membership is free!
- · requires to adhere to publication rules

Topic	Parameter	Accuracy $\Delta X/X$	
Higgs	$m_{ m h}$	0.03%	$\Delta m_{ m h}=$ 35 MeV, 250 GeV
	$\Gamma_{ m h}$	1.6%	250 GeV and 500 GeV
	g(hWW)	0.24%	
	g(hZZ)	0.30%	
	$g(hbar{b})$	0.94%	
	$g(hcar{c})$	2.5%	
	g(hgg)	2.0%	
	$g(h au^+ au^-)$	1.9%	
	`	< 0.30% (95% conf.)	
	$g(htar{t})$	3.7%	1000 GeV
	g(hhh)	26%	
	$g(h\mu^+\mu^-)$	16%	
Тор	$m_{ m t}$	0.02%	$\Delta m_{ m t}=$ 34 MeV, threshold scan
	$\Gamma_{ m t}$	2.4%	
	$ ilde{F}_{1N}^{\gamma}$	0.2%	500 GeV
	$ ilde{F}_{1N}^{ ilde{Z}_{1N}^{oldsymbol{v}}}$	0.3%	
	$ ilde{F}_{1.\Lambda}^{ ilde{Z}_{1.\Lambda}^{ ext{y}}}$	0.5%	
	$ ilde{F}_{\mathrm{ov}}^{\gamma A}$	0.3%	
	$\Gamma_{ m t} \ ilde{F}_{ m 1V}^{\gamma} \ ilde{F}_{ m 1V}^{Z} \ ilde{F}_{ m 1A}^{Z} \ ilde{F}_{ m 2V}^{\gamma} \ ilde{F}_{ m 2V}^{Z}$	0.6%	
\overline{W}	$m_{ m W}$	0.004%	$\Delta m_{ m W}=$ 3 MeV, threshold scan
	g_1	0.16%	500 GeV
	κ_γ	0.03%	
	$\kappa_{ m Z}^{'}$	0.03%	
	λ_{γ}	0.06%	
	$\lambda_{ m Z}^{'}$	0.07%	
H^0 , A^0	$m_{ m H}$, $m_{ m A}$	1.5%	
,	aneta	20%	
$\widetilde{\chi}^+$	$m(\widetilde{\chi}^+)$	1%	
7	$m(\widetilde{\widetilde{\chi}}^0)$	1%	
\widetilde{t}	$m(\widetilde{t})$	1%	
U	$\cos heta_{ m t}$	0.4%	
	COSOT	0.7/0	

Abbreviations

- · ILC International Linear Collider
- · LCC Linear Collider Collaboration
- · SiD Silicon Detector (Detector for ILC)
- · ILD International Large Detector
- ECFA/ACFA/ICFA Eropean/Asian/International Committee for Future Accelerators
- · CLIC Compact Linear Collider